Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    A novel approach for spam email detection based on shifted binary patterns
    (Wiley-Blackwell, 2016-01-11) Kaya, Yılmaz; Ertuğrul, Ömer Faruk
    Advances in communication allow people flexibility to communicate in various ways. Electronic mail (email) is one of the most used communication methods for personal or business purposes. However, it brings one of the most tackling issues, called spam email, which also raises concerns about data safety. Thus, the requirement of detecting spams is crucial for keeping the users safe and saving them from the waste of time while tackling those issues. In this study, an effective approach based on the probability of the usage of the characters that has similar orders with respect to their UTF-8 value by employing shifted one-dimensional local binary pattern (shifted-1D-LBP) was used to extract quantitative features from emails for spam email detection. Shifted-1D-LBP, which can be described as an ordered set of binary comparisons of the center value with its neighboring values, is a content-based approach to spam detection with low-level information. To validate the performance of the proposed approach, three benchmark corpora, Spamassasian, Ling-Spam, and TREC email corpuses, were used. The average classification accuracies of the proposed approach were 92.34%, 92.57%, and 95.15%, respectively. Analysis and promising experimental results indicated that the proposed approach was a very competitive feature extraction method in spam email filtering.
  • Öğe
    A novel approach for SEMG signal classification with adaptive local binary pattern
    (Springer Nature, 2015-12-31) Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan
    Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.