3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine(Elsevier, 2008-01-09) Altun, Şehmus; Bulut, Hüsamettin; Öner, CengizThe use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters.Öğe Performance and emission analysis of cottonseed oil methyl ester in a diesel engine(Elsevier, 2010-03) Aydın, Hüseyin; Bayındır, HasanIn this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.Öğe Exhaust emissions of a CI engine operated with biodiesel from rapeseed oil(Taylor & Francis, 2011-01-16) Aydın, Hüseyin; İlkılıç, CumaliIn this study, biodiesel was produced from rapeseed oil and was used in a single cylinder, naturally aspirated and direct-injected diesel engine as pure biodiesel (B100) and as a blend with standard diesel fuel by 20% biodiesel to 80% diesel fuel (B20). The diesel engine emissions and some performance parameters were investigated at fully loaded engine conditions. The effects of pure biodiesel and its blend with diesel fuel on emissions of carbon monoxide (CO), nitrogen oxides (NOx), carbon dioxide (CO2), and sulfur dioxide (SO2) were clarified. Results showed that biodiesel fuel is environmentally friendly since it reduced the emissions of CO, SO 2, and CO2 of engines at all speeds. Results also indicated that the pure biodiesel gave about 12% lower power and 20 to 25% higher fuel consumption as compared to diesel. However, the results were almost the same or slightly different from a blend of biodiesel-diesel and petroleum diesel fuel.