3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe A noninvasive time-frequency-based approach to estimate cuffless arterial blood pressure(TÜBİTAK, 2018-09-28) Ertuğrul, Ömer Faruk; Sezgin, NecmettinArterial blood pressure (ABP) is one of the most vital signs in the prophylaxis and treatment of blood pressure-related diseases because raised blood pressure is the most significant cause of death and the second major cause of disability in the world. Higher ABP yields greater strain on arteries and these extra strains turn arteries into thicker, less flexible, and more narrow structures. This increases the possibility of having an artery busting or artery occlusion, which are the primary reasons for heart attacks, kidney disease, or strokes. In addition to its importance in monitoring cardiovascular homeostasis, measurement of ABP is imperative in surgical operations. In this study, a simple and effective approach was proposed to estimate ABP from electrocardiogram (ECG) and photoplethysmograph (PPG) signals by an extreme learning machine (ELM) and statistical properties of the ECG and/or PPG signals in the time-frequency domain. To evaluate and apply the proposed approach, the Cuffless Blood Pressure Estimation Dataset, which was published and shared by UCI, was employed. First, the statistical properties were extracted from ECG and PPG signals that were in the time-frequency domain. Later, extracted features were employed to estimate cuffless ABP for each subject by the ELM and some popular machine learning methods. Achieved results and reported results in the literature showed that the proposed approach can be successfully employed for estimating cuffless blood pressure (BP) from ECGs and/or PPGs. Additionally, with the proposed approach, the systolic BP, mean BP, and diastolic BP can be calculated simultaneously.Öğe A fast feature selection approach based on extreme learning machine and coefficient of variation(TÜBİTAK, 2017-07-30) Ertuğrul, Ömer Faruk; Tağluk, Mehmet EminFeature selection is the method of reducing the size of data without degrading their accuracy. In this study, we propose a novel feature selection approach, based on extreme learning machines (ELMs) and the coefficient of variation (CV). In the proposed approach, the most relevant features are identified by ranking each feature with the coefficient obtained through ELM divided by CV. The achieved accuracies and computational costs, obtained with the use of features selected via the proposed approach in 9 classification and 26 regression benchmark data sets, were compared to those obtained with all features, as well as those obtained with the features selected by a wrapper and a filtering method. The achieved accuracy values obtained with the proposed approach were generally higher than when using all features. Furthermore, high feature reduction ratios were obtained with the proposed approach, including the achieved feature reduction ratios in epilepsy, liver, EMG, shuttle, and abalone. Stock data sets were 90.48%, 90%, 70.59%, 66.67%, 75%, and 77.78%, respectively. This approach is an extremely fast process that is independent of the employed machine-learning methods.Öğe Determining optimal artificial neural network training method in predicting the performance and emission parameters of a biodiesel-fueled diesel generator(International Journal of Automotive Engineering and Technologies, 2019-04-03) Altun, Şehmus; Ertuğrul, Ömer FarukArtificial neural network (ANN) methods were employed and suggested in modeling the emissions and performance of a diesel generator fueled with waste cooking oil derived biodiesel during steady-state operation. These papers are generally built on determining optimal network structure, but the modelling accuracy of an ANN is also highly dependent on employed training method. In modeling, operating conditions and fuel blend ratio were used as the inputs while the performance and emission parameters were the outputs. The modeling results obtained by conventional ANNs that were trained by back propagation (BP) learning algorithm, radial basis function (RBF), and extreme learning machine (ELM) were compared with experimental results and each other. The accuracy of the estimations by ELM was above 95% for all the output parameters except for specific fuel consumption and thermal efficiency. Moreover, ELM performed better than BP and RBF with lower mean relative error (MRE) in case where the emissions were estimated. The ELM provided correlation coefficients of 0.987, 0.950 and 0.996 for unburned hydrocarbons (HCs), nitrogen oxides (NOx) and smoke opacity (SO), respectively, while for BP, they were 0.973, 0.818, 0.993, and for RBF, 0.975, 0.640 and 0.981. The most suitable training function for each emission and performance parameters of diesel generator was determined based on obtained accuracies.