Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine
    (Elsevier, 2014-07-15) Oktay, Hasan; Yumrutaş, Recep; Behçet, Rasim
    In this study, two fuels called as FOME (Fish Oil Methyl Ester) and COME (Cooking Oil Methyl Ester) were produced from waste fish and cooking oils using the transesterification method. Commercial D2 (Diesel fuel) and two fuel samples obtained by blending the FOME and COME with the D2 with a ratio of 25% on volume basis were used as fuels in a Diesel test engine. An experimental study was performed for investigating the performance and exhaust emissions of the Diesel engine using the fuels. According to the test results, it was observed that the fish oil based fuel indicated better performance and exhaust emission parameters than those of cooking oil. Results clearly showed that the engine power and torque values were lower than those of the Diesel fuel with values of 3.05% and 1.25% for FB25, and 4.07% and 2.2% for CB25, respectively. Also, brake specific fuel consumption for the produced fuels increased up to 5.69% compared to Diesel fuel. However, HC and CO emission reductions compared to the Diesel fuel were found to be around 16.24% and 19.81%, respectively. But, the amount of increase in NOx emissions for the same biodiesel fuels reached up to 17.2%.
  • Öğe
    Comparative experimental investigation on the effects of heavy alcohols- safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine
    (Elsevier, 2021-02-05) Işık, Mehmet Zerrakki
    The experimental works carried out in this article evaluates the potential of using heavy alcohol and safflower biodiesel as the blended fuel mixtures without making any modifications in the tests diesel engine. For this purpose, volumetrically 20% of Propanol, Pentanol, Butanol, and Octanol were blended with safflower biodiesel fuel and they were named as PR20, PE20, BU20, and OC20, respectively. The performance, combustion, and emission data were found out at the same conditions of constant engine speed and various loads and compared with pure biodiesel (B100) and diesel fuel(ULSD). In the experiments, a four-cylinder, water-cooled diesel engine that was loaded by an electrical power generator was used for the tests. The addition of alcohol causes an increase in fuel consumption due to a decrease in lower thermal performance. The use of heavy alcohols in diesel engine in specific quantities by mixing with biodiesel significantly increases engine brake thermal efficiency. Negative effects of low cetane number and high latent heat of vaporization that may decrease ignition delay and decrease cylinder pressure while increase peak heat release was considered to be compensated by the better mixing properties and atomization of alcohol blended biodiesel thus eventually improve the combustion. Alcohol addition to biodiesel fuel can be accepted as a useful application to increase brake thermal efficiency and reduce nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC) emissions by reducing the density and viscosity.