Arama Sonuçları

Listeleniyor 1 - 10 / 13
  • Öğe
    Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine
    (Elsevier, 2009-02-15) Altun, Şehmus; Öner, Cengiz
    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.
  • Öğe
    Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends
    (Elsevier, 2017-02-05) Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfi; Aydın, Hüseyin
    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.
  • Öğe
    Performance and emission analysis of cottonseed oil methyl ester in a diesel engine
    (Elsevier, 2010-03) Aydın, Hüseyin; Bayındır, Hasan
    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.
  • Öğe
    Analysis of ethanol RCCI application with safflower biodiesel blends in a high load diesel power generator
    (Elsevier, 2016-11-15) Işık, Mehmet Zerrakki; Aydın, Hüseyin
    The effects of RCCI in a diesel power generator by using safflower oil biodiesel-diesel blends were experimentally investigated. Ethanol was premixed as PFI by rates of 30% and 50% of total mass fuel consumption of the engine. Tests were conducted at constant engine speed of 1500 rpm and fixed load 10.8 kW engine power. The purpose of blending biodiesel with diesel is to increase the fuel reactivity of primary fuel in order to easily initiate the combustion. Therefore, test fuels were prepared by blending 10% of the biodiesel with 90% of diesel, 20% of the biodiesel with 80% of diesel and 50% of the biodiesel with 50% of diesel. The most important combustion, performance and emission indicators of the engine under various conditions have been deeply investigated and results have been presented. The ethanol RCCI operation increased peak pressure values especially with using of B50 as high reactivity fuel while combustion was retarded for both RCCI modes. Overall, many indicators of the combustion was improved. Performance parameters were developed. Especially, bsfc was considerably increased. NOx, emissions were considerably decreased while CO and HC emissions were a bit increased.
  • Öğe
    Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine
    (Elsevier, 2018-06-15) Aydın, Hüseyin; Çelebi, Yahya
    As our world demands more and more energy and fossil fuel resources are running out, searches onfindingalternative fuels in internal combustion engines are increasing. Alcohols and biofuels obtained from oils can beused as alternative diesel fuels. The present work investigated the effects ofn-butanol addition to safflowerbiodiesel usage in a diesel engine used for driving an electrical power generator. Safflower biodiesel was ob-tained by using transesterification method. Binary blends of butanol-biodiesel and ternary blends of ultra-lowsulfur diesel-biodiesel–butanol were contained 5%, 10%, and 20% butanol in volume basis. The tests werecarried out on a four-cylinder, four-strokes, and direct-injection diesel engine at half load operation with stableengine speed of 1500 rpm. Experimental test results on combustion characteristics, emission and performance ofthe fuels were investigated. According to test results, formation of heat release rates and in-cylinder pressurecurves were considerably similar and total heat transfer, average gas temperature and mass fraction burned wereslightly changed. The ternary blends showed lower emission and increased brake thermal efficiency up to 1.5%.Besides, average mass fuel consumption was increased up to 5% and brake specific fuel consumption up to 6%.For the other fuels, emission and brake thermal efficiency were deteriorated.
  • Öğe
    Scrutinizing the combustion, performance and emissions of safflower biodiesel-kerosene fueled diesel engine used as power source for a generato
    (Elsevier, 2016-06-01) Aydın, Hüseyin
    When neat biodiesel or its blends with diesel fuel that contain high amounts of biodiesel are used in diesel engines some operational problems such as poor injection, bad atomization and incomplete combustion occur mainly due to higher viscosity and surface tension. Engine problems with the use of biodiesel-fuel blends that contain higher percentages of biodiesel need to be solved in order to utilize the advantages of biodiesel in environmental and economical ways. The mentioned problems can also be solved by blending biodiesel with another low density or viscosity fuel such as kerosene. In present study biodiesel was produced from safflower oil. S90&K10, S75&K25 and S50&K50 were prepared by blending biodiesel with kerosene. A 4 cylinder diesel engine that was used to drive an electric generator was used to deeply investigate the similarity of combustion, performance and emission characteristics of the blend fuels to D2. All experiments were carried out at constant loads of 3.6, 7.2 and 10.8 kW generated powers. Patterns of combustion parameters found to be quite similar for blends and D2 fuel. NOx emissions were considerably decreased with percentages of 68.2%, 56.9% and 55.1% for S50&K50, S75&K25 and S90&K10, respectively while unburned HC emissions were a bit increased. Mass fuel consumption and BSFC were slightly increased for S75&K25 and S90&K10, but they were decreased with an average increase in BTE by 3.84% for S50&K50 fuel when compared to D2. Eventually, it was concluded that high percentages of safflower oil biodiesel can be a potential substitute for diesel fuel provided that it is used as blended with certain amounts of kerosene.
  • Öğe
    Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine
    (Elsevier, 2010-02-02) Aydın, Hüseyin; İlkılıç, Cumali
    The use of biodiesel as an alternative diesel engine fuel is increasing rapidly. However, due to technical deficiencies, they are rarely used purely or with high percentages in unmodified diesel engines. Therefore, in this study, we used ethanol as an additive to research the possible use of higher percentages of biodiesel in an unmodified diesel engine. Commercial diesel fuel, 20% biodiesel and 80% diesel fuel, called here as B20, and 80% biodiesel and 20% ethanol, called here as BE20, were used in a single cylinder, four strokes direct injection diesel engine. The effect of test fuels on engine torque, power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and CO, CO2, NOx and SO2 emissions was investigated. The experimental results showed that the performance of CI engine was improved with the use of the BE20 especially in comparison to B20. Besides, the exhaust emissions for BE20 were fairly reduced.
  • Öğe
    Properties and emission indicators of biodiesel fuels obtained from waste oils from the Turkish industry
    (Elsevier, 2014-03-14) Altun, Şehmus; Lapuerta, Magín
    Three waste oils from traditional manufacturing industries in Turkey, such as leather fat, obtained as a by-product in the leather industry, waste anchovy fish oil, derived from the fish-processing industry, and waste frying cottonseed oil from food industry, have been evaluated as alternative raw materials for biodiesel production, with potentially low life-cycle greenhouse emissions. Measured properties such as heating value, density, viscosity, flash point, acidity and cold flow properties, showed that the obtained biodiesel fuels fulfilled both the European and American quality standards and could be used to partially replace petroleum diesel in automotive engines. From gas chromatography analysis, detailed fatty acid profile was obtained, which permitted the application of group contribution methods for the estimation of thermodynamic properties (critical parameters, acentric factor) and thermochemical properties (enthalpies of vaporization and formation). This information was useful to calculate some indicators related to the most important diesel engine emissions, such as soot (main component of particulate matter) and nitric oxide emissions. Soot indicators reveal significant reduction potential with respect to fossil diesel fuels, and, among the studied biodiesel fuels, soot emissions would be lowest for the most saturated and shortest carbon-chain length biodiesel fuel. Adiabatic flame temperature, selected as the main nitric oxide emission indicator, shows small differences among the studied biofuels. Both the properties and emission indicators of the biodiesel fuels studied are within the typical ranges of other conventional biodiesel fuels.
  • Öğe
    Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends
    (Elsevier, 2019-04) Işık, Mehmet Zerakki; Aydın, Hüseyin
    In this study, the effects of Reactivity Controlled Compression Ignition (RCCI) application on engine combustion, performance and emissions in a diesel generator were investigated. In the experiments, safflower oil derived biodiesel and diesel mixtures were used as the high reactivity fuel (primary fuel) and gasoline as the low reactivity fuel. The RCCI application was provided by the connection of a secondary fuel injection system with the intake manifold. The gasoline RCCI application rate was 30% and 50% of the total mass fuel consumption of the engine and was pre-mixed as port fuel injection (PFI). Tests were performed at a constant engine load (10.8 kW) and engine speed of 1500 rpm. The purpose of using diesel and biodiesel mixtures is to increase the reactivity of the primary fuel that facilitates the start of the combustion. The combustion, performance and emissions, which are the most important parameters of the engine operation, have been thoroughly investigated and the results were presented. In RCCI application, in peak values of pressure, velocity of heat release, average gas temperature partial increases were determined. When the ratio of gasoline PFI was increased, the NOx emissions significantly decreased and the engine efficiency was also increased, while the CO and HC emissions were slightly increased.
  • Öğe
    Comparative experimental investigation on the effects of heavy alcohols- safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine
    (Elsevier, 2021-02-05) Işık, Mehmet Zerrakki
    The experimental works carried out in this article evaluates the potential of using heavy alcohol and safflower biodiesel as the blended fuel mixtures without making any modifications in the tests diesel engine. For this purpose, volumetrically 20% of Propanol, Pentanol, Butanol, and Octanol were blended with safflower biodiesel fuel and they were named as PR20, PE20, BU20, and OC20, respectively. The performance, combustion, and emission data were found out at the same conditions of constant engine speed and various loads and compared with pure biodiesel (B100) and diesel fuel(ULSD). In the experiments, a four-cylinder, water-cooled diesel engine that was loaded by an electrical power generator was used for the tests. The addition of alcohol causes an increase in fuel consumption due to a decrease in lower thermal performance. The use of heavy alcohols in diesel engine in specific quantities by mixing with biodiesel significantly increases engine brake thermal efficiency. Negative effects of low cetane number and high latent heat of vaporization that may decrease ignition delay and decrease cylinder pressure while increase peak heat release was considered to be compensated by the better mixing properties and atomization of alcohol blended biodiesel thus eventually improve the combustion. Alcohol addition to biodiesel fuel can be accepted as a useful application to increase brake thermal efficiency and reduce nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC) emissions by reducing the density and viscosity.