Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Derin öğrenme yöntemleri kullanılarak Diyarbakır yöresi karpuzu görüntülerinden ağırlığının tahmin edilmesi
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2022-08-18) Kayra, Halil; Koç, Savaş
    Bu tez çalışmasında Diyarbakır yöresinde yetişen karpuzların görüntüleri kullanılarak derin öğ-renme metotlarıyla karpuzların ağırlık tahmini yapılmıştır. Çalışmada 5000 adet karpuz görüntüsü kullanıl-mıştır. Diyarbakır yöresinde yetiştirilen karpuzların market ve semt pazarlarında fotoğrafları çekilerek bilgisayar ortamında kayıt altına alınmıştır. Toplanan karpuz görüntülerinin arka planları alındıktan sonra maskeleri Python programında yapılmıştır. Maskeler U-Net mimarisinde kullanılmak üzere eğitim dosyasına alınmıştır. Derin öğrenme yöntemlerinde evrişimli sinir ağları ile U-Net mimarisi kullanılmıştır. Görüntülerin segmentasyonu başarılı bir şekilde yapılmıştır. U-Net mimarisi %99,65 ora-nında başarılı bir şekilde karpuz görüntüsünü geometrik olarak tahmin etmiştir. U-Net modelinde elde edilen görüntülerden piksel alan metodu ile karpuzun görüntüde kapladığı alan oranı hesabı yapılmıştır. Görüntülerin boy ve en pikselleri belirlendikten sonra yapay sinir ağı ile eğitimlerine geçilmiştir. En iyi mimariyi bulmak için yapay sinir ağları 9 farklı mimari ile eğitimi yapılmıştır. En iyi mimari 4 gizli kat-mana sahip 1024 birime ayrılmış olan ve aktivasyon fonksiyonu olarak ReLU kullanılan mimari olmuş-tur. Görüntülerden elde edilen karpuz verilerinin çok katmanlı yapay sinir ağlarında eğitilmesi ile test doğruluk oranı %92,59 ve eğitim doğruluk oranı ise %94,43 bulunmuştur. Sonuç olarak oluşturulan derin öğrenme yöntemi saye-sinde 65 cm mesafede fotoğrafı çekilen karpuz görüntülerinin kaç kilo aralığında olduğu tahmin edecek bir program oluşturularak dijital tarım alanındaki çalışmalara katkıda bulunacaktır.
  • Öğe
    Derin öğrenme teknikleri kullanılarak meyve ve sebzede çeşitli hastalıkların tespit edilmesi
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2023-09-28) Özcan, Sevil; Acar, Emrullah
    Meyve ve sebze hastalıklarının gıda güvenliği ve sürdürülebilir tarım pratikleri açısından kritik önemi bulunmaktadır. Dolayısıyla hastalıklar ürün verimini düşürmekte, kaliteyi azaltmakta ve böylece küresel gıda arzını tehdit etmektedir. Bu hastalıklar aynı zamanda biyoçeşitliliği de olumsuz etkilemekte, ekosistem dengesini bozmakta ve çiftçilerin geçim kaynaklarını zayıflatmaktadır. Bu çalışmada, derin öğrenme teknikleri kullanılarak meyve ve sebzelerde görülen hastalıkların tespiti yapılmıştır. Bu araştırma kapsamında 12 sınıfa ait 2907 adet RGB görüntüden çevrimiçi bir veri seti elde edilmiştir. Her sınıf için veri genişletme yöntemi ile veri seti 2907'den 17442’e kadar çıkarılmıştır. Meyve ve sebzelerdeki çeşitli hastalıkların tespiti için 10 katmanlı evrişimli derin ağ modeli oluşturulmuş ve ön eğitimli derin ağ mimarileri ( InceptionV3 ve ResNet50) kullanılmıştır. Elde edilen sonuçlar, en başarılı yöntemleri belirlemek için zaman ve başarı oranı açısından karşılaştırılmıştır. Sağlanan analizlerin sonuçları ayrıca tasarlanan bu gerçek zamanlı sistem ile meyve ve sebzelerde hastalık görüntülerini tespit etme ve tahminlerini bilgisayar ekranına aktarmak için gerçekleştirilmiştir.