Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bakkaloğlu, Ömer Faruk" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes
    (Elsevier, 2009-11-03) Güllü, Ömer; Karataş, Şükrü; Güler, Gülşen; Bakkaloğlu, Ömer Faruk
    We have studied the experimental linear relationship between ideality factors and barrier heights (BHs) for Co/n-Si metal–semiconductor (MS) structures with a doping density of about 1015 cm−3. The barrier heights for the Co/n-type Si metal–semiconductor structures from the current–voltage (I–V) characteristics varied from 0.64 to 0.70 eV, the ideality factor n varied from 1.18 to 1.26, and from reverse bias capacitance–voltage (C−2–V) characteristics the barrier height varied from 0.68 to 0.81 eV. The experimental barrier height distributions obtained from the I–V and C−2–V characteristics were fitted by a Gaussian distribution function, and their mean values were found to be 0.67 and 0.75 eV, respectively. Furthermore, the lateral homogeneous BH value of approximately 0.81 eV for Co/n-Si metal–semiconductor structures was obtained from the linear relationship between experimental effective BHs and ideality factors.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Analysis of the series resistance and interface state densities in metal semiconductor structures
    (Journal of Physics: Conference Series, 2009-03) Güllü, Ömer; Karataş, Şükrü; Güler, Gülşen; Bakkaloğlu, Ömer Faruk
    The electrical properties of Co/n-Si metal-semiconductor (MS) Schottky structure investigated at room temperature using current-voltage (I-V) characteristics. The characteristic parameters of the structure such as barrier height, ideality factor and series resistance have been determined from the I-V measurements. The values of barrier height obtained from Norde’s function were compared with those from Cheung functions, and it was seen that there was a good agreement between barrier heights from both methods. The series resistance values calculated with Cheung’s two methods were compared and seen that there was an agreement with each other. However, the values of series resistance obtained from Cheung functions and Norde’s functions are not agreeing with each other. Because, Cheung functions are only applied to the non-linear region (high voltage region) of the forward bias I–V characteristics. Furthermore, the energy distribution of interface state density was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The results show that the presence of thin interfacial layer between the metal and semiconductor
  • Yükleniyor...
    Küçük Resim
    Öğe
    Electrical characteristics of Co/n-Si schottky barrier diodes using I – V and C – V measurements electrical characteristics of Co/n-Si schottky barrier diodes using I – V and C – V measurements
    (Chinese Physics Letters, 2009-06) Güllü, Ömer; Güler, Gülşen; Karataş, Şükrü; Bakkaloğlu, Ömer Faruk
    Electrical characteristics of Co/n-Si Schottky barrier diodes are analysed by current-voltage (I – V) and capacitance-voltage (C – V) techniques at room temperature. The electronic parameters such as ideality factor, barrier height and average series resistance are determined. The barrier height 0.76eV obtained from the C – V measurements is higher than that of the value 0.70eV obtained from the I – V measurements. The series resistance RS and the ideality factor n are determined from the d ln(I)/dV plot and are found to be 193.62Ω, and 1.34, respectively. The barrier height and the RS value are calculated from the H(I) – I plot and are found to be 0.71 eV and 205.95Ω. Furthermore, the energy distribution of the interface state density is determined from the forward bias I – V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density Nss ranges from 6.484 × 1011 cm−2eV−1 in (EC – 0.446) eV to 2.801 × 1010 cm−2eV−1 in (EC – 0.631) eV, of the Co/n-Si Schottky barrier diode. The results show the presence of a thin interfacial layer between the metal and the semiconductor.

| Batman Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Batı Raman Kampüsü, Batman, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder