Modelling of effects of various chip breaker forms on surface roughness in turning operations by utilizing artificial neural networks
Yükleniyor...
Tarih
2016-03-01
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Gazi Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-ShareAlike 3.0 United States
Attribution-NonCommercial-ShareAlike 3.0 United States
Özet
In this study, the effects of different chip breaker forms and cutting parameters on the surface roughness on machined surfaces
were investigated experimentally in turning of AISI 1050 steel; and values of surface roughness obtained from experiments were
determined with empirical equations using artificial neural networks. The utilizing of ANN was offered to determine the surface
roughness depending on chip breaker forms and cutting parameters of AISI 1050 steel. The back propagation learning algorithm
and fermi transfer function were used in artificial neural network. Experimental measurements data were employed as training
and test data in order to train the neural network created. The best fitting training data set was attained with ten neurons in two
hidden layers 6 of which were at first hidden layer and 4 of which were at second hidden layer, making it possible to predict
surface roughness with precision at least as good as that of the experimental error over the entire experimental range. After
network training, R2
value was found as 0.978, and average error as 0.018%. When the results of mathematical modelling are
examined, the computed surface roughness is observed to be apparently within acceptable values
Bu çalışmada, AISI 1050 çeliğinin tornalanmasında, farklı talaş kırıcı formlarının ve kesme parametrelerinin işlenmiş yüzeylerdeki yüzey pürüzlülüğü üzerinde etkileri deneysel olarak araştırılmış ve deneylerden elde edilen yüzey pürüzlülük değerleri yapay sinir ağları kullanılarak ampirik eşitlikler ile belirlenmiştir. AISI 1050 çeliğinin talaş kırıcı formlarına ve kesme parametrelerine bağlı olarak yüzey pürüzlülüğünü belirlemek için yapay sinir ağların kullanımı önerilmiştir. Yapay sinir ağında geri yayılım öğrenme algoritması ve fermi transfer fonksiyonu kullanılmıştır. Oluşturulan sinir ağını eğitmek amacıyla eğitim ve test verisi olarak deneysel ölçüm verileri uygulanmıştır. Bütün deneysel aralık üzerinde yüzey pürüzlülüğünü en iyi hassasiyet ile tahmin etmek için, en uygun eğitim veri seti, mümkün oldukça deneysel hatanın en az olduğu, on nöronlu iki gizli katmanlı ilk gizli katmanında 6, ikinci gizli katmanda 4 nöron ile elde edilmiştir. Ağ eğitildikten sonra, R2 değeri; 0.978 ve ortalama hata değeri; 0.018% olarak bulunmuştur. Matematiksel modellemenin sonuçları incelendiğinde, hesaplanan yüzey pürüzlülüğünün açık bir şekilde kabul edilebilir değerler içerisinde olduğu görülmüştür.
Bu çalışmada, AISI 1050 çeliğinin tornalanmasında, farklı talaş kırıcı formlarının ve kesme parametrelerinin işlenmiş yüzeylerdeki yüzey pürüzlülüğü üzerinde etkileri deneysel olarak araştırılmış ve deneylerden elde edilen yüzey pürüzlülük değerleri yapay sinir ağları kullanılarak ampirik eşitlikler ile belirlenmiştir. AISI 1050 çeliğinin talaş kırıcı formlarına ve kesme parametrelerine bağlı olarak yüzey pürüzlülüğünü belirlemek için yapay sinir ağların kullanımı önerilmiştir. Yapay sinir ağında geri yayılım öğrenme algoritması ve fermi transfer fonksiyonu kullanılmıştır. Oluşturulan sinir ağını eğitmek amacıyla eğitim ve test verisi olarak deneysel ölçüm verileri uygulanmıştır. Bütün deneysel aralık üzerinde yüzey pürüzlülüğünü en iyi hassasiyet ile tahmin etmek için, en uygun eğitim veri seti, mümkün oldukça deneysel hatanın en az olduğu, on nöronlu iki gizli katmanlı ilk gizli katmanında 6, ikinci gizli katmanda 4 nöron ile elde edilmiştir. Ağ eğitildikten sonra, R2 değeri; 0.978 ve ortalama hata değeri; 0.018% olarak bulunmuştur. Matematiksel modellemenin sonuçları incelendiğinde, hesaplanan yüzey pürüzlülüğünün açık bir şekilde kabul edilebilir değerler içerisinde olduğu görülmüştür.
Açıklama
Anahtar Kelimeler
Chip Breaker Forms, Surface Roughness, Artificial Neural Network (ANN), Turning, Talaş Kırıcı Formları, Yüzey Pürüzlülüğü, Yapay Sinir Ağları (YSA), Tornalama
Kaynak
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
19
Sayı
1
Künye
Gürbüz, H., Baday, Ş., Sözen, A. (2016). Modelling of effects of various chip breaker forms on surface roughness in turning operations by utilizing artificial neural networks. Politeknik Dergisi, 19 (1), pp.71-83.