Orlicz-Sobolev uzaylarında nonlokal denklemlerin çözümleri üzerine
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Batman Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
İlk bölümde, bundan sonraki bölümlerde işlenecek olan konuları ilgilendiren Lebesgue uzayı ve Sobolev uzayı ve bu uzaylarla ilgili temel kavram,notasyon ve teoremlere yer verilmiştir. İkinci bölümde Orlicz uzayları ve bu uzaylarla ilgili temel kavram,notasyon ve teoremlere yer verilmiştir. Üçüncü bölümde varyasyonel yaklaşım ve varyasyonel yaklaşımla ilgili temel kavram, tanım ve teoremlerden söz edilmiş, ayrıca varyasyonel yaklaşımın uygulandığı bazı problem türlerinden söz edilmiştir.Varyasyonel yaklaşım,özellikle lineer olmayan kısmi diferansiyel denklemlerin analizinde kullanılan çok etkili bir araçtır.Bazı diferansiyel denklemlerin çözümünü veren genel bir teorinin olmaması,varyasyonel yaklaşımın önemini daha da arttırmaktadır. Kısacası varyasyonel yaklaşım bir diferansiyel denklemi doğrudan çözmek yerine bu denklemin çözümlerini ilgili enerji fonksiyonelinin kritik noktalarına veya minimize dizisine karşılık getirerek bulmayı amaçlayan bir yaklaşımdır. Dördüncü bölüm ise tez çalışmasının orijinal kısmı olup, bu bölümde Robin sınır-değer koşullarına sahip nonlokal bir eliptik denklemin çözümleri varyasyonel yaklaşım ve Ekeland varyasyonel prensibi kullanılarak Orlicz-sobolev uzaylarında gösterilmiştir.
In the first chapter, the basic concepts, notation and theorems regarding Lebesgue and Sobolev spaces are given. In the second section, the basic concepts, notation and theorems regarding Orlicz spaces are given. In the third section, the basic concepts,notation and theorems of the variational approach and are given. The variational approach has been applied to many problem types since it is a very effective tool for analyzing nonlinear partial differential equations. The absence of a general theory that solves every type of nonlinear differential equations has increased the importance of the variational approach. In short, the variational approach is a method that aims to find the solution of the given differential equation by corresponding its solutions to the critical points of the corresponding energy functional or the minimize sequence instead of directly solving the differential equation. The fourth section is the original part of the thesis work, in which the solutions of a nonlocal elliptic equation with Robin boundary-value conditions are obtained in Orlicz-Sobolev spaces by using the variational approach and the Ekeland variational principle.
In the first chapter, the basic concepts, notation and theorems regarding Lebesgue and Sobolev spaces are given. In the second section, the basic concepts, notation and theorems regarding Orlicz spaces are given. In the third section, the basic concepts,notation and theorems of the variational approach and are given. The variational approach has been applied to many problem types since it is a very effective tool for analyzing nonlinear partial differential equations. The absence of a general theory that solves every type of nonlinear differential equations has increased the importance of the variational approach. In short, the variational approach is a method that aims to find the solution of the given differential equation by corresponding its solutions to the critical points of the corresponding energy functional or the minimize sequence instead of directly solving the differential equation. The fourth section is the original part of the thesis work, in which the solutions of a nonlocal elliptic equation with Robin boundary-value conditions are obtained in Orlicz-Sobolev spaces by using the variational approach and the Ekeland variational principle.
Açıklama
Anahtar Kelimeler
Lebesgue Uzayları, Orlicz Uzayları, Sobolev Uzayları, Varyasyonel Yaklaşım, Ekeland Varyasyonel Prensibi, Lebesgue Spaces, Orlicz Spaces, Sobolev Spaces, Variatonal Approach, Ekeland Variational Principle
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Süslü, K. (2017). Orlicz-Sobolev uzaylarında nonlokal denklemlerin çözümleri üzerine (Yayınlanmamış Yüksek Lisans Tezi). Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.