Doküman dili tanıma için yeni bir öznitelik çıkarım yaklaşımı: İkili desenler
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Attribution-ShareAlike 3.0 United States
Özet
Doğal dil işlemenin önemli alt konularından biri olan dil tanıma (DT), bir dokümanın içeriğine göre yazıldığı dili belirleme işlemidir. Bu çalışmada, karakterlerin UTF-8 değerlerini birbirleri ile karşılaştırmalar sonucu elde edilen ikili desenler kullanarak yeni bir dil tanıma yaklaşımı, bir boyutlu yerel ikili örüntüler (1B-YİÖ) önerilmiştir. Önerilen yöntem farklı sayıda dillerden oluşan metinler içeren dört veri kümesi ile test edilmiştir. 1B-YİÖ ile dokümanlardan elde edilen öznitelikler kullanılarak farklı makine öğrenmesi yöntemleri ile sınıflandırma işlemi gerçekleştirilmiştir. Dört veri kümesi için sınıflandırma başarıları sırası ile %86.20, %92.75, %100 ve %89.77 olarak gözlenmiştir. Elde edilen sonuçlara göre önerilen öznitelik çıkarım yönteminin dil tanıma için önemli örüntüler sağladığı görülmüştür.
Language identification (LI), which is a major task in natural language processing, is the process of determining the language from a given content. In this paper, a novel approach, which is based on the probability of the use of the characters that have the similar orders with respect to their UTF-8 values, was proposed. In order to evaluate and validate the proposed approach, four datasets, which contain texts in different numbers of languages, were employed. In the proposed approach, the features that were exacted by one-dimensional local binary pattern (1D-LBP) method were classified by various machine learning methods. Achieved LI accuracies in each of four employed datasets were 86.20%, 92.75%, 100% and 89.77%, respectively. The results showed that the proposed approach yields high success rates and it is an efficient way of language identification.