Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    On the fundamental gaps of some saturated numerical semigroups with multiplicity 4
    (Hikari, 2016) Süer, Meral; İlhan, Sedat; Çelik, Ahmet
    In this study, we calculate the number of fundamental gaps of the some numerical semigroups which are for and and for and and or. Also, we give the type sequence of these numerical semigroups.
  • Öğe
    Katlılığı 6 olan saturated sayısal yarıgruplar üzerine
    (Batman Üniversitesi, 2017) Süer, Meral; İlhan, Sedat; Çelik, Ahmet
    İlk olarak sayısal yarıgrup problemi, “ Sayısal yarıgruba ait olmayan en büyük tamsayıyı üreteçleri cinsinden nasıl ifade edilebilir?” şeklinde olup, 19. yy sonunda karşımıza çıkmıştır. Sayısal yarıgrup çalışan ilk matematikçiler Frobenius ve Sylvester’dır. Sayısal yarıgrup kavramı günümüzde de hala matematikçilerin ilgi alanındadır. Sayısal yarıgrup problemleri, sayılar teorisi ile bağlantılı olduğu gibi matematiğin diğer alanlarında ve bilgisayar bilimleri ile de ilgilidir. Diophant moduler eşitsizliklerin çözümünde, liner tamsayı programlamada, şifrelemede, değişmeli cebir ve cebirsel geometrinin uygulamalarında özel ilgi alanı oluşturmuştur. Bu bağlamda saturated sayısal yarıgruplarda literatürde önemli çalışmalarda yer almış. Özellikle saturated halkaların, yarıgruplar teorisine geçişi olarak karşımıza çıkmış. Bu çalışmadaki amacımız katlılığı 6 ve kondüktörü C olan saturated sayısal yarıgruplar üzerine çalışmaktır. Burada C, 6 dan büyük veya eşit ve k negatif olamayan tamsayı olmak üzere 6k+1 den farklı olarak yazılabilen pozitif bir tamsayıdır. Katlılığı 6 ve kondüktörü C olan tüm saturated sayısal yarıgrupları elde edip bu sayısal yarıgrupların Frobenius sayısı, belirteç sayısı ve cinsini bu yarıgrupların üreteçleri ile ifade edeceğiz.