4 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 4 / 4
Öğe Investigation of mechanical properties of composites obtained from textile wastes(Batman Üniversitesi, 2022-07-02) Adin, Mehmet ŞükrüThe textile industry is one of the manufacturing sectors that pollutes the world the most. Since textile wastes are destroyed by burning traditionally, they cause great damage to the environment. Therefore, recycling of these wastes is of great importance. One of these recycling methods is their use in the production of composite materials, the application areas of which have increased in recent years. In this study, the mechanical properties of composite materials produced using cotton and polyester fabrics from waste textiles were investigated. It has been observed that 22% of the composite materials produced with reinforcement elements at different angles (0°, 45°, 90°) are reinforcement elements and 78% are resins. As a result of the tensile tests, the highest tensile strength value was obtained with the polyester fabric with 0° reinforcement angle as 55.72 MPa. It has been found that the increase in the reinforcement angles positively affects the tensile strength in cotton fabric reinforced composites, whereas this situation occurs in the opposite way in polyester fabric reinforced composites. When the highest tensile strength values of polyester fabric and cotton fabric reinforced composite samples were compared, it was seen that the sample using polyester fabric (55.72 MPa) had 69% higher tensile strength than the sample using cotton fabric (33.05 MPa). In addition, the elongation values of polyester fabric reinforced composites were higher than cotton fabric reinforced composites.Öğe Investigation of optimal MIG welding parameters and energy consumption for Invar alloys(Batman Üniversitesi, 2022-07-02) Adin, Mehmet ŞükrüInvar alloys are materials used in aviation and aerospace industries to make precision components and test equipment due to their excellent coefficient of thermal expansion. Therefore, the diversity of the joining methods of these materials and their joint strength have gained importance. In the presented study, the optimum welding parameters required for the minimum use of energy consumed during MIG welding of Invar alloy materials and for the joints to have the highest tensile strength were investigated. The lowest tensile strength was found to be 375 MPa at 15 mm/s welding speed and 6 mm/s wire feeding speed, and the highest tensile strength was 405 MPa at 20 mm/s welding speed and 18 mm/s wire feed. It has been understood that the power consumed for joining Invar alloy bars generally increases in direct proportion to the parameter increases up to 20 mm/s welding speed. It was observed that the lowest consumed power value was 1.61 kW with 15 mm/s welding speed and 6 mm/s wire feeding speed, while the highest consumed power value was 3.93 kW with 25mm/s welding speed and 18 mm/s wire feeding speed. It has been understood that an average of 38% energy savings can be achieved thanks to the optimum parameters obtained.Öğe Lazer kaynağı ile kaynak yapılan alüminyum alaşımlarının mekanik özelliklerinin araştırılması ve kaynak parametrelerinin taguchi ve anova yöntemleri kullanılarak optimizasyonu(Mehmet BULUT, 2022-12-21) Adin, Mehmet ŞükrüBu çalışmada, AA2024 alüminyum alaşımı malzemelerin lazer kaynağı sırasında uygulanan farklı kaynak parametrelerinin çekme mukavemeti üzerindeki etkileri araştırılmış ve en uygun kaynak parametrelerini elde etmek için Taguchi ve ANOVA yöntemleri kullanılarak optimizasyonları yapılmıştır. Değişken kaynak parametreleri olarak lazer gücü, darbe süresi, ışın güç yoğunluğu ve darbe enerjisi kullanılmıştır. Sonuçlar, en düşük çekme dayanımının, 1800 W lazer gücünde, 5 ms darbe süresinde, 6000 W/mm2 ışın güç yoğunluğunda ve 9,5 Joule darbe enerjisi kullanılarak elde edildiğini, en yüksek çekme dayanımının ise 2600 W lazer gücünde, 6 ms darbe süresinde, 6500 W/mm2 ışın güç yoğunluğunda ve 9,5 Joule darbe enerjisi kullanılarak elde edildiğini göstermiştir. En yüksek çekme dayanımı (174 MPa) ile en düşük çekme dayanımı (113 MPa) sonuçları karşılaştırıldığında, en yüksek çekme dayanımının en düşük çekme dayanımından %53,98 daha yüksek olduğu bulunmuştur. S/N oranlarına göre, 2600 W lazer gücü, 6 ms darbe süresi, 7000 W/mm2 ışın güç yoğunluğu ve 10,5 Joule darbe enerjisinin AA2024 alüminyum alaşımının lazer kaynağı ile kaynak edilmesi için en optimum kaynak parametreleri olduğu anlaşılmıştır. ANOVA analizine göre ortalama çekme dayanımı üzerinde en etkili parametrenin lazer gücü (%82,45) olduğu belirlenmiştir.Öğe Optimization of mechanical properties of composites obtained from textile wastes using Taguchi and ANOVA methods(Batman Üniversitesi, 2022-07-02) Adin, Mehmet ŞükrüToday, one of the most polluting manufacturing sectors is the textile industry. Therefore, recycling of these wastes is of great interest. One of the solutions applied for the recycling of these wastes is their use in the manufacture of composites. In this study, optimization of manufacturing parameters was made in order to obtain plates with the highest tensile strength from composite materials to be produced from textile wastes by using Taguchi and ANOVA methods. As a result of the study, it was found that the tensile strength of the composite plates made of polyester fabric was higher than the plates made of cotton fabric, and the signal/noise (S/N) ratios of 0° angle reinforced composites were lower than 90° angle reinforced composites. It was observed that there was a nearly linear increase in the S/N ratios depending on the increase in the number of reinforcements. As a result of the ANOVA analysis, it was found that the most effective factor according to the tensile strength was the reinforcement angle with 45.06%. It was observed that the highest tensile strength of the composite plates obtained from cotton fabric was 40.058 MPa with 90° angled reinforcement elements and 14 reinforcements, and the lowest tensile strength was 23.451 MPa with 0° angled reinforcement elements and 10 reinforcements. In composite plates obtained from polyester fabric, the highest tensile strength was 42.136 MPa with 45° angled reinforcement elements and 14 reinforcements, and the lowest tensile strength was 27.112 MPa with 0° angled reinforcement elements and 10 reinforcement numbers. It has been found that the tensile strength of the composite plates obtained from polyester fabric is higher than that of the composite plates obtained from cotton fabric.