Arama Sonuçları

Listeleniyor 1 - 7 / 7
  • Öğe
    Performance and exhaust emissions of a DI diesel engine fueled with waste cooking oil and inedible animal tallow methyl esters
    (TÜBİTAK, 2011) Altun, Şehmus
    The performance and exhaust emissions of a direct injection diesel engine were experimentally investigated using 2 biodiesel fuels with promising economic perspective, one obtained from inedible animal tallow and the other from waste cooking oils. Inedible animal tallow, which is obtained from a mixture of slaughtered cattle and sheep fats collected from a local slaughterhouse during meat preparation process, was transesterified using methyl alcohol and an alkaline catalyst to produce the inedible animal tallow methyl ester. Biodiesel from waste cooking oil was produced from waste cooking oils and methyl alcohol via a transesterification reaction, and provided by a commercial biodiesel producer. In order to investigate the performance and exhaust emissions, the experiments were conducted at different engine speeds under the full load condition of the engine. The experimental results showed, compared with diesel fuel, that the biodiesel fuels resulted in a reduction in brake torque and in an increase in brake specific fuel consumption. Although both biodiesels caused reductions in carbon monoxide (CO), the NOx emissions were higher for waste cooking oil biodiesel and lower for inedible animal tallow biodiesel as compared to diesel fuel.
  • Öğe
    Biodiesel production from raw cottonseed oil and its characterization
    (Energy Education Science and Technolgy Part A, 2011-07) Altun, Şehmus; Yaşar, Fevzi; Öner, Cengiz
    In this study, raw cottonseed oil of Turkish origin was transesterified using methyl alcohol and an alkali catalyst to obtain the cottonseed oil methyl ester. The obtained cottonseed oil methyl ester was analyzed by gas chromatography (GC) for determining the fatty acid composition. The fuel-related properties of cottonseed oil methyl ester, cold filter plugging point, cloud point, kinematic viscosity, density, cetane index, flash point, distillation, sulfur content and heating value were determined and compared with those of petroleum diesel fuel and international biodiesel standards. From gas chromatograph analysis, it was found that the cottonseed oil methyl ester has the more amount of total unsaturated FA, therefore, it showed better cold-flow properties than more saturated ones, as expected. Moreover, the fuel-related properties of cottonseed oil methyl ester were within the specified standards
  • Öğe
    Fuel properties of biodiesels produced from blends of canola oil and animal tallow
    (SILA SCIENCE, 2011-04) Adin, Hamit; Altun, Şehmus; Yaşar, Fevzi
    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oil or animal fats by transesterification with methanol for using in diesel engines. The viscosity and density of biodiesel fuels are important parameters due to being key fuel properties for injection and combustion process of diesel engines. These fuel properties mainly depend on the feedstock which is used in the biodiesel production. Also, lubricity is an important for diesel engine fuels due to the fuel injection systems are lubricated by the fuel itself. In this study, the blends containing 0, 25, 50, 75 and 100% of food-grade canola oil/inedible animal tallow in volume basis were prepared and converted into methyl esters by base-catalyzed transesterification. Effect of canola oil ration in the feedstock on the viscosity, density and lubricity were investigated. Lubricity was determined using the high-frequency reciprocating rig (HFRR) test. Experimental results showed that the kinematics viscosity of increased as animal tallow ratio increased in the feedstock, as animal tallow itself is more viscous than canola oil. Also, density did not change much when blended feedstocks were used. Besides, it was observed that lubricity of biodiesel fuels from blended feedstocks was slightly get worse compared with pure biodiesels.
  • Öğe
    Fuel properties of biodiesels produced from different feedstocks
    (Energy Education Science and Technolgy Part A, 2011) Altun, Şehmus
    Bio diesel is an oxygenated diesel fuel obtained from vegetable oils or animal fats via transesterification reaction. The fuel properties such as viscosity, density, cetane number and heating value are very important for determining the suitability of bio diesel as a diesel engine fuel. These fuel properties mainly depend on the feedstock which is used in the bio diesel production. In this study, the effect of bio diesels produced from different feed stocks such as inedible animal tallow, crude canola oil and canola oil blended with animal tallow on the fuel properties were experimentally investigated. Bio diesel fuels and their blends with petroluem diesel fuel were compared with petroleum diesel (petrodiesel). The results showed that the viscosity and density of all the methyl esters were higher than that of petrodiesel, while the heating values of the methyl esters was lower. Besides, the viscosity and the density of methyl esters are within the bio diesel standards, except for animal tallow methyl ester and it was slightly out of the specification EN 14214. Animal tallow bio diesel has the highest cetane number than those of other fuels include petrodiesel. It is concluded that bio diesels and their blends with petrodiesel have suitable fuel properties, especially cetane numbers, for diesel combustion process.
  • Öğe
    Using gasoline-like fuel obtained from waste automobile tires in a spark-ignited engine
    (Taylor & Francis, 2014-05-01) Altun, Şehmus; Varol, Yasin; Öztop, Hakan Fehmi; Fırat, Müjdat
    An experimental study on performance and exhaust emission of a spark-ignited engine fueled by gasoline-like fuel obtained from waste automobile tires using the prolysis process was performed in this study. Gasoline-like fuel has a higher octane number than unleaded gasoline; however, it has higher in viscosity in comparison to unleaded gasoline, which limited the use of gasoline-like fuel in neat form. Therefore, gasoline-like fuel was blended with unleaded gasoline from 0% to 100% with an increment of 10%, volumetrically. Obtained blends were then used in a spark-ignited engine. It was observed that the test engine was normally run up to blended fuel containing gasoline-like fuel of 60%. It is concluded that gasoline-like fuel can be partially substituted for the gasoline fuel up to 60% in blended form in terms of performance parameters and emissions without any engine modification.
  • Öğe
    Performance and emission characteristics of a diesel engine fueled with biodiesel obtained from a hybrid feedstock
    (Energy Education Science and Technology Part A: Energy Science and Research, 2011-04) Altun, Şehmus
    Vegetable oils and animal fats are widely investigated as a alternative fuel for diesel engines because of their high cetane number. However, animal fats are highly viscous and mostly in solid form at ambient temperature that they need modifications before using them in diesel engines. Pre-heated, blending, transesterification and emulsification are well known to improve usage of animal fats in diesel engines. In this study, biodiesel was produced from a hybrid feedstock (60% crude canola oil/40% inedible animal tallow) by transesterification and tested in a DI diesel engine for determining exhaust emissions and comparing those of biodiesel from pure animal tallow. Biodiesel fuels were tested as blends in diesel fuel (50% biodiesel and 50% diesel fuel). The experimental results show that, compared with animal tallow biodiesel blend, hybrid feedstock biodiesel blend has higher viscosity, density, brake specific fuel consumption, CO and NO x emissions and a lower cetane number, brake thermal efficiency.
  • Öğe
    Effect of n-butanol blending with a blend of diesel and biodiesel on performance and exhaust emissions of a diesel engine
    (ACS Publications, 2011-06-22) Adin, Hamit; Altun, Şehmus; Yaşar, Fevzi; Öner, Cengiz
    Experimental work was conducted to evaluate the effect of using n-butanol (normal butanol) in conventional diesel fuel–biodiesel blends on the engine performance and exhaust emissions of a single cylinder direct injection compression ignition engine with the engine working at a constant engine speed and at different three engine loads. A blend of biodiesel and diesel fuel known as B20 (20% biodiesel and 80% diesel in volume) was prepared, and then n-butanol was added to B20 at a volume percent of 10% and 20% (denoted as B20Bu10 and B20Bu20, respectively). Fuel consumption; regulated exhaust emissions such as nitrogen oxides, carbon monoxide, and total unburned hydrocarbons; and smoke opacity were measured. The brake specific fuel consumption of fuel blends was found to be higher when compared to that of conventional diesel fuel. On the other hand, the addition of n-butanol to the B20 fuel blend caused a slight increase in the brake specific fuel consumption and brake thermal efficiency in comparison to the B20 fuel blend. For exhaust emissions, carbon monoxide (CO) and hydrocarbon (HCs) emissions decreased, and NOx remained almost unchanged at low engine loads, while it decreased at high engine loads. Fuel blends also resulted in a sharp reduction of smoke opacity in the whole range of engine tests.