Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    GLCM tabanlı k-nn sınıflandırıcı modeli ile avuç içi tanıma sistemi
    (Batman Üniversitesi, 2012-06-01) Çalışkan, Abidin; Acar, Emrullah; Kaya, Yılmaz
    K en yakın komşuluk algoritması, sınıflandırma problemini çözen bir algoritmadır. Sınıflandırma, yeni bir imgenin özniteliklerini inceleme ve bu imgeyi önceden tanımlanmış bir sınıfa atamaktır. Önemli olan, her bir sınıfın özelliklerinin önceden belirlenmiş olmasıdır.Bu çalışmada Hongkong Politeknik Üniversitesi veritabanına ait avuç içi imgeleri kullanılmıştır. El imgeleri ön işlemden geçirildikten sonra avuç içi imgeleri elde edilmiştir. Gri seviye eş oluşum matrisi (GLCM) metodu kullanılarak her bir imgeden öz nitelik parametreleri elde edilmiştir. Bu parametreler k en yakın komşuluk algoritması (k-NN) sınıflandırıcısının girişine verilerek performansı en iyi sistem tasarlanmıştır. Sonuç olarak en iyi performans k=1 komşuluk yapısında % 91.4 olarak gözlemlenmiştir.
  • Öğe
    Enerji̇ i̇leti̇m hatlarında Wi̇gner Vi̇lle dağılımı, gri̇ düzey eş oluşum matri̇si̇ ve örüntü tanıma yöntemleri̇ i̇le arıza anali̇zi̇
    (IEEE, 2012-05-30) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin; Kaya, Yılmaz
    Artan enerji ihtiyacı, enerji iletiminin önemini artırmıştır. Enerjinin kesintisiz iletimi için arızalı iletim hattının iletim sisteminden hızla izole edilmesi gerekmektedir. Yapılan çalışmada enerji iletim hatlarında arıza ve arıza tipinin tespiti için yeni bir yöntem geliştirilmiştir. Gerçek enerji iletim hattı arıza sinyallerinin Wigner-Ville zaman frekans dağılımı elde edilmiş ve bu enerji gri düzey eş oluşum matrisi üzerine transfer edilmiştir. Bu matristen arızaya özgün birtakım özellikler çıkarılmıştır. Bu özellikler istatistiksel ve yapay zeka modelleri ile sınıflandırılarak arıza tespiti yapılmıştır. Geliştirilen yöntemin sonuçları daha önce yapılan çalışmaların sonuçları ile karşılaştırılmıştır.