Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Determining relevant features in estimating short-term power load of a small house via feature selection by extreme learning machine
    (IEEE, 2017-11-02) Ertuğrul, Ömer Faruk; Sezgin, Necmettin; Öztekin, Abdulkerim; Tağluk, Mehmet Emin
    Estimating short-term power load is a fundamental issue in the power distribution system. Since short-term power load is related to many parameters such as weather conditions, and time. The aim of this study is to determine the relevant parameters in estimating short-term power load not only in order to decrease the computational cost, but also to achieve higher success rates. Furthermore, by using selected features the required memory, equipment and communication costs are also decreased in real time applications. Feature selection by extreme learning machine method was used in determining relevant features. The short-term power loads of two houses (one of them has a power generation capability) were used in tests and achieved results showed lower error rates were obtained by using less number of features.
  • Öğe
    Örüntü tanımada hopfield ağının kullanılması
    (Batman Üniversitesi, 2012) Sezgin, Necmettin; Tekin, Ramazan; Çalışkan, Abidin
    Bilgisayar teknolojisinin hızlı bir şekilde gelişmesi akıllı sistemlerin insan yaşamının birçok alanında kullanılmasını artırmıştır. Bu alanlardan birisi de alfa nümerik karakterlerin otomatik olarak doğru bir şekilde tanınması, istenen bir objenin tespit edilmesi ve seçilmesidir. Hopfield ağı, gürültülü veya bozuk olan desenin kısmi ipuçlarından ve önceden depolanmış desenlerden yararlanarak bu deseni düzeltebilen karakteristik bir yapıya sahiptir. Bu süreçte ağ, girdi örüntüsünde yapılan her ufak değişimin ardından örüntü enerjisini yeniden hesaplayarak morfolojik dönüşümünün kontrolünü sağlar ve bu örüntünün daha önce öğrendiği başka bir örüntüye yakınsamasını zorlar. Bu benzetişim işlemi, enerjideki değişkenlik durağan olana dek sürer. Nesnelerin otomatik olarak tanınması, seçilmesi ve işlenmesi gibi işlemden sorumlu bir ağın kullanıldığı akıllı sistemler özellikle robotik alanında önemli bir yere sahiptir. Bu çalışmada Hopfield ağ yapısını kullanarak örüntü tanıyan bir sistem geliştirilmeye çalışılmıştır.
  • Öğe
    İki kanal yüzey EMG işareti ile el aç/kapa ve el parmaklarının sınıflandırılması
    (IEEE, 2017-11-02) Sezgin, Necmettin; Ertuğrul, Ömer Faruk; Tekin, Ramazan; Tağluk, Mehmet Emin
    In this study, two-channel surface electromyogram (sEMG) signals were used to classify hand open/close with fingers. The bispectrum analysis of the sEMG signal recorded with surface electrodes near the region of the muscle bundles on the front and back of the forearm was classified by extreme learning machines (ELM) based on phase matches in the EMG signal. EMG signals belonging to 17 persons, 8 males and 9 females, with an average age of 24 were used in the study. The fingers were classified using ELM algorithm with 94.60% accuracy in average. From the information obtained through this study, it seems possible to control finger movements and hand opening/closing by using muscle activities of the forearm which we hope to lead to control of intelligent prosthesis hands with high degree of freedom.
  • Öğe
    Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile zambak yaprağı imgelerinde pas hastalıklarının tespiti
    (Batman Üniversitesi, 2012-06-01) Acar, Emrullah; Çalışkan, Abidin; Sezgin, Necmettin
    Bitkilerdeki hastalıklar, hasadı ve dolayısıyla verimi etkilemektedir. Hastalıkların önceden kestirilmesi, çiftçilerin alacağı önlemler ile verimi artıracaktır. Verimi etkileyen önemli hastalıkların başında pas hastalığı gelmektedir. Bu çalışmada bitki örneği olarak, zirai uygulamalarla ilgili farklı zirai sitelerden bir uzman yardımıyla elde edilmiş zambak çiçeği yaprak imgeleri kullanılmış olup, Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile pas hastalığını tespit eden bir sistem tasarlanmıştır. İlk aşamada, imgelere ilişkin Gabor dalgacık dönüşümü kullanılarak her bir sayısal imgeden ayrı bir özellik matrisi elde edilip, matrislerin ortalama, standart sapma ve entropi gibi istatistiksel değerleri hesaplanmıştır. Bu değerler öznitelik vektörüne eklenerek, her bir imge için bir öznitelik vektörü oluşturulmuştur. İkinci aşamada, Gabor dalgacık dönüşümü tabanlı öznitelik vektörleri yapay sinir ağı modelinin girişine verilerek sınıflandırma için performansı en iyi ağ yapısı belirlenmeye çalışılmıştır. Zambak çiçeği yaprak imgeleri iki (1-sağlıklı, 2- hastalıklı) grupta sınıflandırılmış olup sınıflandırma çalışmaları sonucunda, en iyi ortalama performansa %80,00 başarı ile yapay sinir ağı modelinin (3-25-1) ağ yapısında ulaştığı gözlemlenmiştir.