Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Electrical properties of organic–ınorganic semiconductor device based on rhodamine-101
    (SpringerLink, 2009-05) Güllü, Ömer; Turut, Abdulmecit; Yıldırım, Nezir; Çakar, Muzaffer
    Rhodamine-101 (Rh101) thin films on n-type Si substrates have been formed by means of evaporation, thus Sn/Rh101/n-Si heterojunctions have been fabricated. The Sn/Rh101/n-Si devices are rectifying. The optical energy gaps have been determined from the absorption spectra in the wavelength range of 400 nm to 700 nm. Rh101 has been characterized by direct optical absorption with an optical edge at 2.05 ± 0.05 eV and by indirect optical absorption with␣an optical edge at 1.80 ± 0.05 eV. It was demonstrated that trap-charge-limited current is the dominant transport mechanism at large forward bias. A␣mobility value of μ = 7.31 × 10−6 cm2 V−1 s−1 for Rh101 has been obtained from the forward-bias current–voltage characteristics.
  • Öğe
    Electrical characterization of the Al/new fuchsin/n-Si organic-modified device
    (Elsevier, 2010-03) Güllü, Ömer; Asubay, Sezai; Turut, Abdulmecit; Aydoğan, Şakir
    The current–voltage (I–V) and the capacitance–voltage (C–V) characteristics of the Al/new fuchsin (NF)/n-Si device have been investigated at room temperature. The I–V characteristic of the device shows a good rectification. The ideality factor and the barrier height from the I–V characteristics have been determined as 3.14 and 0.80 eV, respectively. A modified Norde's function combined with the conventional I–V method has been used to extract the parameters including the barrier height and the series resistance. The barrier height and the series resistance obtained from Norde's function have been compared with those from Cheung functions, and it has been seen that there was a good agreement between those from both method. It has also been seen that the values of diode capacitance increased up to the constant values for the forward bias.