3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe Synthesis and characterization of vanadium oxide thin films on different substrates(Springer Nature, 2017-04-11) Güllü, Ömer; Pakma, Osman; Özaydın, Cihat; Özden, Şadan; Kariper, İshak AfşinIn this study, the V8O15 derivative of vanadium oxide was produced on plain glass, indium tin oxide and silicon wafer substrate layers by taking advantage of wet chemical synthesis which is an easy and economical method. The structural properties of the produced films were examined by XRD and SEM analyses. Besides, Al/VOx/p-Si metal-oxide-semiconductor (MOS) structure was obtained by the same synthesis method. Doping densities of these MOS structures were calculated from frequency dependent capacitance–voltage measurements. It was determined that the interface states which were assigned with the help of these parameters vary according to frequency.Öğe A novel approach for SEMG signal classification with adaptive local binary pattern(Springer Nature, 2015-12-31) Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, RamazanFeature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.Öğe Parameter optimization of power system stabilizers via kidney-inspired algorithm(SAGE, 2018-06-25) Ekinci, Serdar; Demiroren, Aysen; Hekimoğlu, BaranThis article describes the application of a new population-based meta-heuristic optimization algorithm inspired by the kidney process in the human body for the tuning of power system stabilizers (PSSs) in a multi-machine power system. The tuning problem of PSS parameters is formulated as an optimization problem that aims at maximizing the damping ratio of the electromechanical modes and the kidney-inspired algorithm (KA) is used to search for the optimal parameters. The efficacy of the KA-based PSS design was successfully tested on a well-known 16-machine, 68-bus power system. The obtained results are evaluated and compared with the other results obtained by the original particle swarm optimization (PSO) and the bat algorithm (BA) methods. From the detailed eigenvalue analysis, the nonlinear simulation studies and some performance indices it has been found out that for damping oscillations, the performance of the proposed KA approach in this study is better than that obtained by other intelligent techniques (PSO and BA). Moreover, the efficiency and the superior performance of the proposed method over the other two algorithms in terms of computation time, convergence rate and solution quality are confirmed.