Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Photoelectric and photocapacitance characteristics of Au/pyrene/N-Si MIS structures
    (Journal of Non-Oxide Glasses, 2017-04-01) Güllü, Ömer; Pakma, Osman; Özaydın, Cihat; Arsel, İsmail; Turmuş, Mesut
    This paper presents in-depth analysis of the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of identically prepared Au/Pyrene(C16H10)/n-Si hybrid organic-oninorganic semiconductor photovoltaic cells (total 43 diodes). The barrier heights, ideality factors and reverse bias saturation currents of all devices were extracted from the electrical characteristics. The mean barrier height, mean ideality factor and mean saturation current from I-V measurements were calculated as 0.79 ± 0.01 eV, 1.40 ± 0.08 and (1.01 ± 0.46)x10-8 A, respectively. Also, the photoelectric (I-V) and photocapacitance (C-V and conductance (G)-voltage (V)) characteristics of the Au/Pyrene/n-Si device under 100 mW/cm2 light illumination were investigated. It has been seen that the light illumination increases strongly the current, capacitance and conductance values of the device due to electron-hole charge pair generation. The C-V and G-V characteristics under illumination have shown a non-monotonic dependence of capacitance on frequency giving rise to a peak. This is attributed to the existence of electrically active traps. The open circuit voltage and short circuit current of the Au/Pyrene/n-Si device were extracted as 80 mV and 30 µA, respectively.
  • Öğe
    Characterization of an Au/n-Si photovoltaic structure with an organic thin film
    (Elsevier, 2013-08) Özaydın, Cihat; Akkılıç, Kemal; İlhan, Salih; Rüzgar, Şerif; Güllü, Ömer; Temel, Hamdi
    We demonstrate that a copper(II) organic complex can control the electrical characteristics of conventional Au/n-Si metal-semiconductor (MS) contacts. We investigated the electronic and photovoltaic properties of a Cu(II) complex/n-Si heterojunction diode. The ideality factor n and barrier height Φb of the diode were 2.22 and 0.736 eV, respectively. An ideality factor greater than unity indicates that the diode exhibits non-ideal current-voltage behavior. This behavior results from the effect of series resistance and the presence of an interfacial layer. The series resistance and barrier height determined using Norde's method were 6.7 kΩ and 0.77 eV, respectively. The device showed photovoltaic behavior, with a maximum open-circuit voltage of 0.24 V and a short circuit current of 1.7 μA under light of 8 mW/cm2.