Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Investigation of mechanical properties of composites obtained from textile wastes
    (Batman Üniversitesi, 2022-07-02) Adin, Mehmet Şükrü
    The textile industry is one of the manufacturing sectors that pollutes the world the most. Since textile wastes are destroyed by burning traditionally, they cause great damage to the environment. Therefore, recycling of these wastes is of great importance. One of these recycling methods is their use in the production of composite materials, the application areas of which have increased in recent years. In this study, the mechanical properties of composite materials produced using cotton and polyester fabrics from waste textiles were investigated. It has been observed that 22% of the composite materials produced with reinforcement elements at different angles (0°, 45°, 90°) are reinforcement elements and 78% are resins. As a result of the tensile tests, the highest tensile strength value was obtained with the polyester fabric with 0° reinforcement angle as 55.72 MPa. It has been found that the increase in the reinforcement angles positively affects the tensile strength in cotton fabric reinforced composites, whereas this situation occurs in the opposite way in polyester fabric reinforced composites. When the highest tensile strength values of polyester fabric and cotton fabric reinforced composite samples were compared, it was seen that the sample using polyester fabric (55.72 MPa) had 69% higher tensile strength than the sample using cotton fabric (33.05 MPa). In addition, the elongation values of polyester fabric reinforced composites were higher than cotton fabric reinforced composites.
  • Öğe
    Effects of natural hard shell particles on physical, chemical, mechanical and thermal properties of composites
    (SAGE Journals, 2021-05-31) Çelik, Yahya Hışman; Çelik, Kadir Serdar; Kılıçkap, Erol
    Shelled herbal foods are widely consumed. The evaluation of the shells of these foods is important due to their features such as low cost, ease of recycling and environmental friendliness. In this study, hazelnut shell (HS), pistachio shell (PS), and apricot kernel shell (AKS) were brought to powder particles by grinding to dimensions of 300–425 µm. Some of the powder particles were converted into ash at 900°C. The amounts of cellulose, ash, humidity, and metal in these particles via chemical analyses were determined, while their structural properties via X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analyses. Composite materials were produced by adding 15 wt.% to the polyester matrix material from these powder particles and ashes. Compression strength, hardness, specific weight, and thermal conductivity of these composites were analyzed. The lowest and highest humidity, ash, cellulose, hemicellulose, and lignin ratios in powders showed differences depending on the type of powders. The amount of Sn and K in the HS, PS, and AKS powders were close to each other, while the amount of Ca, Na, Mg, Fe, Mn, Cu, Zn and Si was higher in AKS powder. The reinforcement adding to the polyester increased the compression strength, hardness, specific weight and thermal conductivity properties.
  • Öğe
    AL/SiC Kompozit malzemenin delinmesinde yüzey pürüzlülüğünün bulanık mantıkla modellenmesi
    (Dicle Üniversitesi, 2016) Çelik, Yahya Hışman; Yenigün, Burak; Kılıçkap, Erol
    Bu çalışmada, sıkıştırma döküm yöntemiyle üretilmiş SiC takviyeli Al esaslı kompozit kullanılmıştır. Üretilen kompozit malzeme farklı uç açılarına sahip HSS takımlar kullanılarak; farklı delme parametrelerinde delme işlemine tabi tutulmuştur. Her bir delme işlemi için delme yüzeylerinin yüzey pürüzlülükleri ölçülmüştür. Elde edilen veriler bulanık mantığa uygulanarak yüzey pürüzlülüğünün modellenmesi yapılmıştır. Veriler incelendiğinde, en iyi yüzey pürüzlülüğü 90˚ uç açısına sahip takım kullanılarak 1500 dev/dak dönme devri ile 0.05 mm/dev ilerleme değerinde elde edilmiştir. En kötü yüzey pürüzlülüğü ise 118˚ uç açılı takımın 2000 dev/dak dönme devri ile 0.15 mm/dev ilerleme değerinde elde edilmiştir. Bulanık mantık kullanılarak elde edilen tahmini değerlerin deney sonuçlarına yakın değerler verdiği görülmüştür
  • Öğe
    Optimization of mechanical properties of composites obtained from textile wastes using Taguchi and ANOVA methods
    (Batman Üniversitesi, 2022-07-02) Adin, Mehmet Şükrü
    Today, one of the most polluting manufacturing sectors is the textile industry. Therefore, recycling of these wastes is of great interest. One of the solutions applied for the recycling of these wastes is their use in the manufacture of composites. In this study, optimization of manufacturing parameters was made in order to obtain plates with the highest tensile strength from composite materials to be produced from textile wastes by using Taguchi and ANOVA methods. As a result of the study, it was found that the tensile strength of the composite plates made of polyester fabric was higher than the plates made of cotton fabric, and the signal/noise (S/N) ratios of 0° angle reinforced composites were lower than 90° angle reinforced composites. It was observed that there was a nearly linear increase in the S/N ratios depending on the increase in the number of reinforcements. As a result of the ANOVA analysis, it was found that the most effective factor according to the tensile strength was the reinforcement angle with 45.06%. It was observed that the highest tensile strength of the composite plates obtained from cotton fabric was 40.058 MPa with 90° angled reinforcement elements and 14 reinforcements, and the lowest tensile strength was 23.451 MPa with 0° angled reinforcement elements and 10 reinforcements. In composite plates obtained from polyester fabric, the highest tensile strength was 42.136 MPa with 45° angled reinforcement elements and 14 reinforcements, and the lowest tensile strength was 27.112 MPa with 0° angled reinforcement elements and 10 reinforcement numbers. It has been found that the tensile strength of the composite plates obtained from polyester fabric is higher than that of the composite plates obtained from cotton fabric.