Arama Sonuçları

Listeleniyor 1 - 10 / 85
  • Öğe
    Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine
    (Elsevier, 2009-02-15) Altun, Şehmus; Öner, Cengiz
    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.
  • Öğe
    The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine
    (Elsevier, 2008-01-09) Altun, Şehmus; Bulut, Hüsamettin; Öner, Cengiz
    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters.
  • Öğe
    Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends
    (Elsevier, 2017-02-05) Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfi; Aydın, Hüseyin
    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.
  • Öğe
    Fluorescence properties and electrochemical behavior of some schiff bases derived from n-aminopyrimidine
    (Springer Nature, 2014-03) Gülcan, Mehmet; Doğrul, Ümit; Öztürk Ürüt, Gülsiye; Levent, Abdulkadir; Akbaş, Esvet
    A series of Schiff bases (L 1, L 2 and L 3 ) were prepared by refluxing aromatic aldehydes with N-Aminopyrimidine derivatives in methanol and ethanol. The structures of synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR and microanalysis. The electrochemical behaviors of the Schiff base ligands were also discussed. Moreover, the evaluation of absorption and emission properties of the structures were carried out in five different solvents. The products show visible absorption maxima in the range of 304-576 nm, and emission maxima from 636 to 736 nm in all solvents tested.
  • Öğe
    Transverse impact and axial compression behaviors of glass/epoxy pipes subjected to seawater and impact loading
    (SAGE, 2013-07) Deniz, Mehmet Emin; Karakuzu, Ramazan; İçten, Bülent Murat
    This article investigates the effects of seawater and impact loading on the impact behavior and compressive strength of impacted glass/epoxy composite pipes. The specimens were immersed into artificial seawater at laboratory conditions for 3, 6, 9, and 12 months. First, the impact tests were carried out on composite pipes at room temperature, and then, the axial compression tests were performed. The results of immersed samples were compared with that of reference specimens (dry). Seawater effect on the force-deflection behavior and failure mechanism is more than impact energy with increase in pipe diameter, while impact energy effect is more dominant than seawater effect for small diameters of the pipe. Compressive strength generally reduces with increase in seawater immersion time and specimen diameter except for the highest diameter.
  • Öğe
    Determination of fatigue life of the unidirectional GFRP/Al hybrid composite laminates
    (Elsevier, 2019-06) Deniz, Mehmet Emin; Aydın, Fırat
    This paper investigates the effects of loading rate and fiber orientation on the fatigue behavior of the unidirectional glass-fiber reinforced-plastic/aluminum (GFRP/Al) hybrid laminated (GLARE-2) plates. Fatigue tests were performed at three kinds of stress ratios (R = 0.3, 0.1, and −0.1) on specimens with different fiber orientations, θ = 0° 15° 30° 45° 60° 75° and 90° in the GFRP layers. All the fatigue results to be presented in this article were obtained in repeated tension-tension and tension-compression at stress ratios of 0.3, 0.1, and −0.1, and the results were compared with each other. It has been shown that the specimens have the highest fatigue life in the fiber orientation direction at R = 0.3 loading rate. Also, it has been shown that the fatigue life of the specimens decreases as the loading rate decreases.
  • Öğe
    Wet chemical methods for producing mixing crystalline phase ZrO 2 thin film
    (Elsevier, 2016-07) Pakma, Osman; Özdemir, Cengiz; Kariper, İshak Afşin; Özaydın, Cihat; Güllü, Ömer
    The aim of the study is to develop a more economical and easier method for obtaining ZrO 2 thin films at lower temperature, unlike the ones mentioned in the literature. For this purpose, wet chemical synthesis methods have been tested and XRD, UV-VIS and SEM analysis of ZrO 2 thin films have been performed. At the end of the analysis, we identified the best method and it has been found that the features of the films produced with this method were better than the films produced by using different reagents, as well as the films reported in the literature. Especially it has been observed that the transmittance of the film produced with this method were higher and better than the films in the literature and the others. In addition, refractive index of the film produced with this method was observed to be lower. Moreover, by using the same method Al/ZrO 2 /p-Si structure has been obtained and it has been compared with Al/p-Si reference structure in terms of electrical parameters.
  • Öğe
    Synthesis, characterization and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography
    (Talanta, 2017-11-1) Aral, Tarık; Aral, Hayriye; Çelik, Kadir Serdar; Altındağ, Ramazan
    A novel multifunctional stationary phase based on silica gel was synthesised starting from L- isoleucine and 4-phenylbutylamine and evaluated as a hydrophilic interaction/reversed-phase mixed-mode stationary phase for high-performance liquid chromatography (HPLC). The prepared stationary phase was characterized by elemental analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and solid-state 13C nuclear magnetic resonance (NMR). The mechanisms involved in the chromatographic separation are multi-interaction, including hydrophobic, π-π, hydrogen-bonding, dipole-dipole and ion-dipole interactions. Based on these interactions, successful separation could be achieved among several aromatic compounds having different polarities under both hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) condition. Nucleotides/nucleosides were separated in the HILIC mode. The effects of different separation conditions, such as pH value, mobile-phase content, column temperature, buffer concentration and flow rate, on the separation of nucleotides/nucleosides in HILIC mode were investigated. The seven nucleotides/nucleosides were separated within 22 min, while six of them were separated within 10 min by isocratic elution. To determine the influence of the new multifunctional stationary phase under the RP condition, a number of moderately and weakly polar and nonpolar compounds, such as 10 substituted anilines and eight substituted phenols were separated successfully under the RP condition within 14 and 15 min, respectively. Additionally, nine mixtures of polar/nonpolar test compounds were simultaneously separated within 19 min, while seven of them were separated within 12 min, under HILIC/RP mixed-mode conditions. Chromatographic parameters, such as the retention factor and peak asymmetry factor, were calculated for all of the analytes, while the theoretical plate number was calculated for analytes separated by isocratic elution. Compared to traditional C18 and commercial HILIC columns, the new stationary phase exhibited both HILIC and RPLC performance, and the scope of analyte separation was thus enlarged.
  • Öğe
    Investigate the effect of pre-drilling in friction drilling of A7075-T651
    (Taylor & Francis, 2014-04-28) Demir, Zülküf; Özek, Cebeli
    Friction drilling is a non-traditional hole achieving method that is a clean, chip-less process, which is called thermal drilling, form drilling, flow drilling, and friction stir drilling. In this study pre-drilling friction drilling was investigated for improving the bushing shape of A7075-T651, which is a brittle cast material. During the process, surface roughness and bushing shapes were analyzed and generated frictional heat was measured by the virtue of thermocouples. Experiments were carried out to 4mm and 6mm in thicknesses of A7075-T651 aluminum alloy at 1200, 1800, 2400, 3000, and 3600 rpm spindle speeds, 20, 40, 60, 80, and 100 mm/min feed rates with using high-speed steel rotating conical tool, whose diameter is 8 mm. Consequently, the bushing shapes were advanced without cracks and petal formation in pre-drilling Friction drilling in comparison with without pre-drilling process. With increasing pre-drilled hole diameter the generated frictional heat was decreased. The achieved temperature was realized to be 1/2-1/3 of the melting temperature of the workpiece. Surface roughness values were decreased with decreasing or increasing both spindle speed and feed rate correspondingly.
  • Öğe
    Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies
    (Journals & Books, 2021-03) Ekinci, Selma; İlter, Zülfiye; Ercan, Selami; Çınar, Ercan; Çakmak, Reşit
    In this study, new, efficient, eco-friendly and magnetically separable nanoadsorbents, MNPs-G1-Mu and MNPs-G2-Mu, were successfully prepared by covalently grafting murexide-terminated polyamidoamine dendrimers on 3-aminopropyl functionalized silica-coated magnetite nanoparticles, and used for rapid removal of lead (II) from aqueous medium. After each adsorption process, the supernatant was successfully acquired from reaction mixture by the magnetic separation, and then analyzed by employing ICP-OES. Chemical and physical characterizations of new nanomaterials were confirmed by XRD, FT-IR, SEM, TEM, and VSM. Maximum adsorption capacities (qm) of both prepared new nanostructured adsorbents were compared with each other and also with some other adsorbents. The kinetic data were appraised by using pseudo-first-order and pseudo-second-order kinetic models. Adsorption isotherms were found to be suitable with both Langmuir and Freundlich isotherm linear equations. The maximum adsorption capacities for MNPs-G1-Mu and MNPs-G2-Mu were calculated as 208.33 mg g−1 and 232.56 mg g−1, respectively. Antimicrobial activities of nanoparticles were also examined against various microorganisms by using microdilution method. It was determined that MNPs-G1-Mu, MNPs-G2-Mu and lead (II) adsorbed MNPs-G2-Mu showed good antimicrobial activity against S. aureus ATTC 29213 and C. Parapsilosis ATTC 22019. MNPs-G1-Mu also showed antimicrobial activity against C. albicans ATTC 10231.