Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Makine öğrenmesi algoritmaları kullanılarak 2040 yılına kadar Türkiye’nin enerji talep tahmini
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2023-06-09) Erdemci, Hakan; Karaman, Ömer Ali
    Nüfusun artışı ile birlikte sanayileşmenin hızla artması enerji ihtiyacını da artmıştır. Bununla birlikte ortaya çıkan bu enerji ihtiyacını karşılayabilmek için ön görülebilecek enerji tahminlerini yapabilmek için makine öğrenme algoritmaları ön plana çıkmıştır. Parçacık sürü optimizasyonu (PSO), yapay sinir ağları (YSA) ve destek vektörü regresyonu (DVR) bu algoritmalar içerisinde yer almaktadır. Bu çalışmada PSO, YSA ve DVR algoritmaları kullanılarak Türkiye’nin 2020-2040 yılları arasında elektrik enerjisi talep tahminlemesi yapılmıştır. Bu tahminleme işlemlerinin yapılabilmesi için 1980-2019 yılları arasında yıllık elektrik tüketim verileri TEİAŞ’tan (Türkiye Elektrik İletim Anonim Şirketinden), nüfus verileri TÜİK’ten (Türkiye İstatistik Kurumundan), ihracat, ithalat, gayri safi yurtiçi hâsıla (GSYH) verileri Dünya Bankası açık veri kümesinden alınmıştır. PSO, YSA ve DVR enerji talep modelleri nüfus, ihracat, ithalat, GSYH verileri kullanılarak geliştirilmiştir. Türkiye'nin sosyoekonomik durumu göz önünde bulundurularak enerji talebi üç farklı senaryoya göre düzenlenmiştir. PSO, YSA ve DVR yöntemlerinin performans sonuçlarını değerlendirebilmek için Kök Ortalama Kare Hata (KOKH), Ortalama Kare Hata (OKH) ve Ortalama Mutlak Hata (OMH) hata metrikleri ve R2 değerleri karşılaştırıldı. Hata metrik değerleri incelendiğinde YSA’nın diğer yöntemlere kıyasla daha başarılı sonuçlar verdiği söylenebilir. 1980-2019 yılları arasında gerçekleşen, bağımsız girdi parametreleri olan nüfus, ihracat, ithalat ve GSYH değerleri ile bağımlı çıktı olan enerji tüketimi arasındaki ilişki korelasyon matrisi kullanılarak incelenmiştir. Korelasyon matrisinde 0,991 değeri ile ihracat ve enerji tüketimi arasında güçlü bir doğrusal ilişki olduğu gözlemlenmiştir. Ayrıca Çoklu regresyon denklemleri oluşturulmuştur. Parametreleri (X1, X2, X3, X4) olan ithalat, ihracat, GSYH, nüfus) bazında F denklemi üzerinden tahminin performans değerlendirmesi yapılmıştır. Dört parametreyi (X1, X2, X3, X4) içeren regresyon denklemi en yüksek (0,995) R2 değerine sahip olup kapsamlı bir temsiliyete sahip olduğu anlaşılmıştır.
  • Öğe
    HPA algoritması ile çok makinalı güç sistemi kararlı kılıcısı tasarımı
    (Gazi Üniversitesi, 2017-12-08) Ekinci, Serdar; Hekimoğu, Baran
    Bu makale, parçacık sürüsü optimizasyonu (PSO) ve yapay arı kolonisine (ABC) dayalı, çok makinalı güç sisteminde güç sistemi kararlı kılıcısının (PSS) optimal tasarımı için iyimser sonuçlar bulmak için güçlü yetilere sahip HPA tekniği adında yeni bir hibrit yaklaşımı tanımlamaktadır. PSS parametrelerinin en uygun ayarlarının elde edilmesi için PSS parametrelerini seçme problemi, özdeğer tabanlı bir amaç fonksiyonu ile basit bir optimizasyon problemine çevrildi ve HPA tekniği kullanılarak çözüldü. Önerilen HPA tabanlı PSS tasarımının etkinliği özdeğer analizi, zaman domeni simülasyonları ve bazı performans indeksleri aracılığıyla farklı arızalar altındaki 3-makinalı 9-baralı güç sistemi üzerinde doğrulandı. Bu çalışmaların sonuçları, HPA algoritmasının PSS parametrelerinin ayarlanması için alternatif ve daha etkin bir iyileştirici olduğunu ve PSO ile ABC’ye oranla güç sisteminin dinamik kararlılığını büyük oranda artırdığını göstermiştir. Ayrıca hesaplama zamanı, yaklaşım hızı ve çözüm kalitesi açısından HPA algoritmasının PSO ve ABC’ye göre potansiyeli ve üstünlüğü kanıtlanmıştır.