4 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 4 / 4
Öğe Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends(Journals & Books, 2010-03) Aydın, Hüseyin; Hanbey, HazarMany studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil–50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil–80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 °C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO’s viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 °C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil.Öğe The effects of injection pressure on the engine performance characteristics of a CI engine fueled with canola oil-diesel blends(Energy Education Science and Technology Part A: Energy Science and Research, 2012-01) Aydın, HüseyinThe usage of vegetable oils in diesel engines has some negative effects especially on engine performance. Therefore vegetable oils can not be used as pure form or with high percentages in diesel fuel in unmodified diesel engines. Some of the engine operation conditions should be improved by modifying engine operation systems for this purpose. The effects of injection pressure on engine performance of a diesel engine, by using two different blends of vegetable oil (canola oil) in diesel fuel (DF) having a concentration of 20% (O20) and 50% (O50) vegetable oil, were studied in the present work. The injection pressure was changed from 200 MPa to 220 MPa. Tests were made at fully loaded engine and different speeds of engine operation. In the experiments, the engine power, torque, brake specific fuel consumption (Bsfc), mass fuel consumption rate, brake thermal efficiency and exhaust gas temperature of the test engine have been investigated. Results revealed that the increased injection pressure can significantly promote performance parameters of diesel engine with using vegetable oil without any modification either in oil or in engine itself. The improved results of experiments have been given as graphics in this paper.Öğe Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission(Journals & Books, 2010-10) Argunhan, Zeki; Yumrutaş, Recep; Arpa, OrhanIn this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation.Öğe Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine(Elsevier, 2014-07-15) Oktay, Hasan; Yumrutaş, Recep; Behçet, RasimIn this study, two fuels called as FOME (Fish Oil Methyl Ester) and COME (Cooking Oil Methyl Ester) were produced from waste fish and cooking oils using the transesterification method. Commercial D2 (Diesel fuel) and two fuel samples obtained by blending the FOME and COME with the D2 with a ratio of 25% on volume basis were used as fuels in a Diesel test engine. An experimental study was performed for investigating the performance and exhaust emissions of the Diesel engine using the fuels. According to the test results, it was observed that the fish oil based fuel indicated better performance and exhaust emission parameters than those of cooking oil. Results clearly showed that the engine power and torque values were lower than those of the Diesel fuel with values of 3.05% and 1.25% for FB25, and 4.07% and 2.2% for CB25, respectively. Also, brake specific fuel consumption for the produced fuels increased up to 5.69% compared to Diesel fuel. However, HC and CO emission reductions compared to the Diesel fuel were found to be around 16.24% and 19.81%, respectively. But, the amount of increase in NOx emissions for the same biodiesel fuels reached up to 17.2%.