Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Determination of performance and exhaust emissions properties of B75 in a CI engine application
    (Journals & Books, 2011-09) Aydın, Hüseyin; İlkılıç, Cumali
    In this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2–3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.
  • Öğe
    Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission
    (Journals & Books, 2010-10) Argunhan, Zeki; Yumrutaş, Recep; Arpa, Orhan
    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation.