2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe New voltammetric strategy for determination and electrochemical behaviors of metformin by pencil graphite electrode in the NaOH(Indian Chemical Society, 2020) Altunkaynak, Yalçın; Yavuz, Ömer; Levent, AbdulkadirMetformin(MET), an oral antidiabetic drug commonly used in the treatment of diabetes, is a drug that increases insulin sensitivity in the biguanide group [1]. MET shows its pharmacological effect by lowering the glucose level in the blood. In the literature research, there are studies using electrochemical techniques for the analysis of MET in biological fluid and drug forms[1-6]. In this study, the electrochemical properties of MET, one of the drugs used in the treatment of diabetes, were performed using a pencil graphite electrode in NaOH (0.1 M) solution. This compound was recorded with an irreversible and diffusion controlled adsorption oxidation peak at approximately +1.28 V by cyclic voltammetry. With square wave stripping voltammetry, it was observed that the peak current signals of MET in the concentration range of 2.76-24.8 µM in 0.1M NaOH solution increased linearly. At a concentration of 2.76 µM (n = 9), the limit of detection and relative standard deviation were calculated as 9.03 nM (1.495 ngmL-1 ) and 3.25 %, respectively. This method has been successfully applied for MET analysis in pharmaceutical preparations and urine samples without any separation.Öğe Electrooxidation of thiourea and its square-wave voltammetric determination using pencil graphite electrode(Walter de Gruyter, 2011-04-01) Levent, Abdulkadir; Keskin, Ertuğrul; Yardım, Yavuz; Şentürk, ZühreThe electrochemical properties of thiourea (TU) were investigated in pH range 2.0-12.0 by cyclic and square-wave voltammetry. The compound was irreversibly oxidized at a pencil graphite electrode in one or two oxidation steps which are pH-dependent. Based on the voltammetric peak for the second oxidation process of TU in phosphate buffer at pH 12.0, a square-wave voltammetric method was proposed for the determination of the compound in the range 6.3-30μm, with a detection limit of 1.29μm. The applicability to direct assays of wastewaters was also tested.