Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Dalgacık dönüşümü tabanlı parmak izi tanıma
    (IEEE, 2015-06-19) Çalışkan, Abidin; Ertuğrul, Ömer Faruk
    Bir biyometrik sistem, bir bireyin sahip olduğu karakteristik veya eşsiz özniteliğe dayalı olarak otomatik tanımlamayı sağlar. Parmak izi, günümüzde birçok alanda geniş bir kullanım alanına sahip bir biyometrik sistemdir. Özellikle insan kimliğinin doğrulanması ve tespit edilmesinde kullanılan parmak izi, erişim için geleneksel olarak kullanılan yöntemlere göre daha güvenilirdir. Bu çalışmada, Gabor dalgacık dönüşümü tabanlı parmak izi tanıma sistemi gerçekleştirilmiştir. Gri seviye parmak izi imgelerinden dalgacık öznitelikleri çıkarılmıştır. Son olarak, parmak izi imgelerinin tanınmasında k en yakın komşuluk sınıflandırıcısı kullanılmıştır. Önerilen algoritma, PolyU yüksek çözünürlüklü parmak izi veri tabanı görüntüleri üzerinde test edilmiştir. Deneysel sonuçlar, önerilen yöntemin mevcut metotların doğruluğunu arttırabildiğini göstermiştir.
  • Öğe
    GRI seviye eş-oluşum matrisi tabanlı avuç içi tanıma sistemi
    (IEEE, 2014-06-12) Çalışkan, Abidin; Ergen, Burhan
    Bir biyometrik sistem, bireyleri sahip oldukları karakteristik veya eşsiz bir özelliğe dayalı olarak otomatik tanımlamayı sağlar. Avuç içi biyometri sistemi, sahip olduğu avantajlar nedeniyle biyometrik tanıma sistemleri arasında önemli bir yere sahiptir. Bu çalışmada, doku tipi imge tanılamada başarılı sonuçlar veren Gri Seviye Eş-Oluşum Matrisi tabanlı avuç içi tanıma sistemi önerilmiştir. İlk olarak, özellik çıkarımında görüntü uyumunu kolaylaştırmak için koordinat sistemi belirlenmiştir. Sonra, ilgilenilen bölge avuç içi imgesinden alınmıştır. Geliştirilen sistem ile ilgilenilen bölgenin özellikleri belirlenmiş ve tanıma için sınıflandırıcıya verilmiştir.
  • Öğe
    Fingerprint recognition system based on gray level co-occurrence matrix
    (INESEC, 2017) Çalışkan, Abidin
    The biometric system provides an automatic identification of any person, depending on characteristic and feature/attribution of person. Fingerprint is, today, one of the biometric systems that have a wide range of use in many investigation areas. Fingerprint, especially used for authentication, is more reliable comparing to the other traditional methods which are used for access. In this study, a gray level co-occurrence matrix (GLCM) based fingerprint recognition system which provides successful results in tissue type imagining recognition has been implemented. The purpose of this study is to show the effectiveness of the GLCM in fingerprint recognition. By using GLCM which is a feature extracting method, fingerprint images are classified by multilayer perceptron (MLP) artificial neural network classification technique. Statistical methods were used to extraction the feature by obtaining the GLCM matrix for the gray level images. In the first step of system analysis, the system is trained by using GLCM attribute parameters and performance information is measured for different network topologies of the MLP classifier. After the classification stage, when the results are compared with the success rates of previously made fingerprint recognition systems, the success rate of 88.25% is considered as acceptable. As a result, it is considered that the results are reasonable when results are compared with other studies in the literature. Experimental results have also shown that the proposed method can improve the accuracy of existing methods.