9 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 9 / 9
Öğe Synthesis, characterization and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography(Talanta, 2017-11-1) Aral, Tarık; Aral, Hayriye; Çelik, Kadir Serdar; Altındağ, RamazanA novel multifunctional stationary phase based on silica gel was synthesised starting from L- isoleucine and 4-phenylbutylamine and evaluated as a hydrophilic interaction/reversed-phase mixed-mode stationary phase for high-performance liquid chromatography (HPLC). The prepared stationary phase was characterized by elemental analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and solid-state 13C nuclear magnetic resonance (NMR). The mechanisms involved in the chromatographic separation are multi-interaction, including hydrophobic, π-π, hydrogen-bonding, dipole-dipole and ion-dipole interactions. Based on these interactions, successful separation could be achieved among several aromatic compounds having different polarities under both hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) condition. Nucleotides/nucleosides were separated in the HILIC mode. The effects of different separation conditions, such as pH value, mobile-phase content, column temperature, buffer concentration and flow rate, on the separation of nucleotides/nucleosides in HILIC mode were investigated. The seven nucleotides/nucleosides were separated within 22 min, while six of them were separated within 10 min by isocratic elution. To determine the influence of the new multifunctional stationary phase under the RP condition, a number of moderately and weakly polar and nonpolar compounds, such as 10 substituted anilines and eight substituted phenols were separated successfully under the RP condition within 14 and 15 min, respectively. Additionally, nine mixtures of polar/nonpolar test compounds were simultaneously separated within 19 min, while seven of them were separated within 12 min, under HILIC/RP mixed-mode conditions. Chromatographic parameters, such as the retention factor and peak asymmetry factor, were calculated for all of the analytes, while the theoretical plate number was calculated for analytes separated by isocratic elution. Compared to traditional C18 and commercial HILIC columns, the new stationary phase exhibited both HILIC and RPLC performance, and the scope of analyte separation was thus enlarged.Öğe Preparation of a novel ionic hybrid stationary phase by non-covalent functionalization of single-walled carbon nanotubes with amino-derivatized silica gel for fast HPLC separation of aromatic compounds(Elsevier, 2016-03) Aral, Hayriye; Çelik, Kadir Serdar; Aral, Tarık; Topal, GiraySingle-walled carbon nanotubes (SWCNTs) were immobilized on spherical silica gel with a 4-μm average particle size and a 60-Å average pore size. The amino-derivatized silica gel was non-covalently coated with carboxylated SWCNTs to preserve the structure of the nanotubes and their physico-chemical properties. The novel ionic hybrid stationary phase was characterized by scanning electron microscopy (SEM), infra-red (IR) spectroscopy and elemental analysis, and then, it was used to fill an empty 150×4.6 mm 2 high-performance liquid chromatography (HPLC) column. Chromatographic parameters, such as the theoretical plate number, retention factor and peak asymmetry factor, and analytical parameters, such as the limit of detection (LOD), limit of quantification (LOQ), linear range, calibration equation, and R 2 value, and quantitative analysis parameters were calculated for all of the analytes. Using different mobile phases, five different classes of aromatic hydrocarbons were separated in a very short analysis time of 4-8 min. Furthermore, a high theoretical plate number (up to 25000) and an excellent peak asymmetry factor (1.0) were obtained. The results showed that the surface of the SWNTs had very strong interactions with aromatic groups, therefore providing high selectivity for the separation of different classes of aromatic compounds. This study indicates that SWCNTs enable the extension of the application range of the newly prepared stationary phases for the fast separation of aromatic compounds by HPLC.Öğe Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography(Elsevier, 2017-11-01) Aral, Hayriye; Çelik, Kadir Serdar; Altındağ, Ramazan; Aral, TarıkA novel multifunctional stationary phase based on silica gel was synthesised starting from L- isoleucine and 4-phenylbutylamine and evaluated as a hydrophilic interaction/reversed-phase mixed-mode stationary phase for high-performance liquid chromatography (HPLC). The prepared stationary phase was characterized by elemental analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and solid-state 13C nuclear magnetic resonance (NMR). The mechanisms involved in the chromatographic separation are multi-interaction, including hydrophobic, π-π, hydrogen-bonding, dipole-dipole and ion-dipole interactions. Based on these interactions, successful separation could be achieved among several aromatic compounds having different polarities under both hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) condition. Nucleotides/nucleosides were separated in the HILIC mode. The effects of different separation conditions, such as pH value, mobile-phase content, column temperature, buffer concentration and flow rate, on the separation of nucleotides/nucleosides in HILIC mode were investigated. The seven nucleotides/nucleosides were separated within 22 min, while six of them were separated within 10 min by isocratic elution. To determine the influence of the new multifunctional stationary phase under the RP condition, a number of moderately and weakly polar and nonpolar compounds, such as 10 substituted anilines and eight substituted phenols were separated successfully under the RP condition within 14 and 15 min, respectively. Additionally, nine mixtures of polar/nonpolar test compounds were simultaneously separated within 19 min, while seven of them were separated within 12 min, under HILIC/RP mixed-mode conditions. Chromatographic parameters, such as the retention factor and peak asymmetry factor, were calculated for all of the analytes, while the theoretical plate number was calculated for analytes separated by isocratic elution. Compared to traditional C18 and commercial HILIC columns, the new stationary phase exhibited both HILIC and RPLC performance, and the scope of analyte separation was thus enlarged.Öğe Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications(Elsevier, 2015-01) Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, RecepA novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 μm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20 °C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10 mM) and acetonitrile with 20 °C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10 min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10 mM) and acetonitrile with 20 °C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10 mM) and acetonitrile with 20 °C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min.Öğe Development of a novel amide silica stationary phase for the reversed phase HPLC separation of different classes of phytohormones(Journals & Books, 2013-05-14) Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, RecepA novel amide-bonded silica stationary phase was prepared starting fromN-Boc-phenylalanine, cyclo-hexylamine and spherical silica gel (4mm, 60 Å). The amide ligand was synthesised with high yield. Theresulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. Theresulting selector bearing a polar amide group is used for the reversed-phase chromatography separationof different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours ofthese analytes on the amide-silica stationary phase were compared with those of RP-C18 column undersame conditions. The effects of different separation conditions, such as mobile phase, pH value,flow rateand temperature, on the separation and retention behaviours of the 13 phytohormones in this systemwere studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with anaqueous mobile phase containing pH¼6.85 potassium phosphate buffer (20 mM) and acetonitrile with a221C column temperature. Under these experimental conditions, the 12 phytohormones could beseparated and detected at 230 or 270 nm within 26 minÖğe Sensitive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy carbon electrode in the presence of cationic surfactant(Elsevier, 2014-05-10) Levent, Abdulkadir; Altun, Ahmet; Yardım, Yavuz; Şentürk, ZühreIn this work, the electrochemical investigation of testosterone, a steroid hormone from the androgen group, was carried out in aqueous and aqueous/surfactant solutions using a glassy carbon (GC) electrode. In cyclic voltammetry, the compound showed one irreversible and adsorption-controlled reduction peak. Addition of cationic surfactant (cetyltrimethylammonium bromide, CTAB) was found to enhance the reduction current signal of testosterone, whereas, anionic (sodium dodecylsulfate, SDS) and non-ionic (Tween 80) surfactants exhibited opposite effect. Using square-wave adsorptive stripping voltammetry, the current showed a linear dependence with concentration in the range between 10 and 70 nM in Britton–Robinson buffer, pH 5.0 containing 3 mM CTAB. A detection limit of 1.18 nM (0.34 ng mL−1), and relative standard deviation of 4.12% for a concentration level of 35 nM (n = 11) were calculated. This method was successfully applied for the analysis of testosterone in oil-based pharmaceutical preparations and urine samples without any separation.Öğe Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations(ScienceDirect, 2016-05-16) Yiğit, Aydın; Yardım, Yavuz; Çelebi, Metin; Levent, Abdulkadir; Şentürk, ZühreA graphene-Nafion compositefilm was fabricated on the glassy carbon electrode (GR-NF/GCE), and usedfor simultaneous determination of paracetamol (PAR), aspirin (ASA) and caffeine (CAF). The electro-chemical behaviors of PAR, ASA and CAF were investigated by cyclic voltammetry and square-waveadsorptive anodic stripping voltammetry. By using stripping one for simultaneous determination of PAR,ASA and CAF, their electrochemical oxidation peaks appeared atþ0.64, 1.04 and 1.44 V, and good linearcurrent responses were obtained with the detection limits of 18 ng mL 1(1.2 10 9M), 11.7 ng mL 1(6.5 10 8M) and 7.3 ng mL 1(3.8 10 8M), respectively. Finally, the proposed electrochemical sensorwas successfully applied for quantifying PAR, ASA and CAF in commercial tablet formulations.Öğe Voltammetric behavior of benzo[a]pyrene at boron-doped diamond electrode: A study of its determination by adsorptive transfer stripping voltammetry based on the enhancement effect of anionic surfactant, sodium dodecylsulfate(Elsevier, 2011-07-15) Yardım, Yavuz; Keskin, Ertuğrul; Levent, Abdulkadir; Şentürk, ZühreBenzo[a]pyrene (BaP), a member of the polycyclic aromatic hydrocarbon (PAH) class, is one of the most potent PAH carcinogens. The electrochemical oxidation of BaP was first studied by cyclic voltammetry at the boron-doped diamond electrode in non-aqueous solvent (dimethylsulphoxide with lithium perchlorate). The compound was irreversibly oxidized in a single step at high positive potential, resulting in the well-resolved formation of a couple with a reduction and re-oxidation wave at much lower potentials. Special attention was given to the use of adsorptive stripping voltammetry together with a medium exchange procedure in aqueous and aqueous/surfactant solutions over the pH range of 2.0–8.0. The technique in aqueous solutions had little value in practice because of too small oxidation peak current. This problem was solved when surfactants were added into the sample solution, by which the oxidation peak currents of BaP were found enhanced dramatically. The employed surfactants were sodium dodecylsulfate (anionic, SDS), cetyltrimethylammonium bromide (cationic, CTAB) and Tween 80 (non-ionic). Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in Britton–Robinson buffer, pH 2.0 containing 2.5 × 10−4 M SDS at +1.07 V (vs. Ag/AgCl) (after 120 s accumulation at +0.10 V). The process could be used to determine BaP in the concentration range of 16–200 nM (4.04–50.46 ng mL−1), with a detection limit of 2.86 nM (0.72 ng mL−1). This method was also applied to determine BaP in model water sample prepared by adding its different concentrations into tap water.Öğe Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones(Elsevier, 2013-11) Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, RecepA novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 μm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min.