Arama Sonuçları

Listeleniyor 1 - 5 / 5
  • Öğe
    GRI seviye eş-oluşum matrisi tabanlı avuç içi tanıma sistemi
    (IEEE, 2014-06-12) Çalışkan, Abidin; Ergen, Burhan
    Bir biyometrik sistem, bireyleri sahip oldukları karakteristik veya eşsiz bir özelliğe dayalı olarak otomatik tanımlamayı sağlar. Avuç içi biyometri sistemi, sahip olduğu avantajlar nedeniyle biyometrik tanıma sistemleri arasında önemli bir yere sahiptir. Bu çalışmada, doku tipi imge tanılamada başarılı sonuçlar veren Gri Seviye Eş-Oluşum Matrisi tabanlı avuç içi tanıma sistemi önerilmiştir. İlk olarak, özellik çıkarımında görüntü uyumunu kolaylaştırmak için koordinat sistemi belirlenmiştir. Sonra, ilgilenilen bölge avuç içi imgesinden alınmıştır. Geliştirilen sistem ile ilgilenilen bölgenin özellikleri belirlenmiş ve tanıma için sınıflandırıcıya verilmiştir.
  • Öğe
    Palmprint recognition based gabor wavelet transform using K-NN classification
    (European Journal of Technique (EJT), 2016-04-01) Çalışkan, Abidin
    Palmprint recognition system is regarded as the reliable and accurate biometric identification system available. Viewed in the palmprint recognition system of biometric approaches, compared to other models because it is a new handheld biometric feature recognition system has recently attracted the attention of researchers. In this study, palmprint recognition system based on Gabor wavelet transform has been developed. Firstly, image coordinate system is defined to facilitate image alignment for feature extraction. Then, region of interest is cropped from the palmprint images. With developed system feature extracted of region of interest and given of k-NN classifier.
  • Öğe
    Palmprint recognition system based on gabor wavelet transform with K-NN classifier model
    (INESEC, 2017) Çalışkan, Abidin; Ergen, Burhan; Acar, Emrullah
    Palmprint recognition system is regarded as reliable and accurate biometric identification system. The biometric approach palm recognition system has attracted the attention of researchers in recent times because of the presenting a new biometric feature compared to other models. In this work, gabor wavelet transform (GWT) based palmprint recognition system has been developed. Firstly, image coordinate system is determined in order to facilitate image alignment for feature extraction. Then, region of interest is cropped from the palmprint images. With the developed system, features are extracted from the region of interest and they are given to k-nearest neighbors (k-NN) classifier as input parameters. Finally, the highest success rate for GWT based systematic sampling was computed as 86.90% according to the non-request data selection and it was observed that the proposed recognition system provide successful results in classification of palmprint images. Moreover, a good identification of the feature vector is the main factor that affects performance. Thus, the performance can also be improved by finding more suitable feature vectors.
  • Öğe
    Fingerprint recognition system based on gray level co-occurrence matrix
    (INESEC, 2017) Çalışkan, Abidin
    The biometric system provides an automatic identification of any person, depending on characteristic and feature/attribution of person. Fingerprint is, today, one of the biometric systems that have a wide range of use in many investigation areas. Fingerprint, especially used for authentication, is more reliable comparing to the other traditional methods which are used for access. In this study, a gray level co-occurrence matrix (GLCM) based fingerprint recognition system which provides successful results in tissue type imagining recognition has been implemented. The purpose of this study is to show the effectiveness of the GLCM in fingerprint recognition. By using GLCM which is a feature extracting method, fingerprint images are classified by multilayer perceptron (MLP) artificial neural network classification technique. Statistical methods were used to extraction the feature by obtaining the GLCM matrix for the gray level images. In the first step of system analysis, the system is trained by using GLCM attribute parameters and performance information is measured for different network topologies of the MLP classifier. After the classification stage, when the results are compared with the success rates of previously made fingerprint recognition systems, the success rate of 88.25% is considered as acceptable. As a result, it is considered that the results are reasonable when results are compared with other studies in the literature. Experimental results have also shown that the proposed method can improve the accuracy of existing methods.
  • Öğe
    Gabor dalgacık dönüşümü kullanarak avuç içi tanıma
    (IEEE, 2013-06-13) Çalışkan, Abidin; Ergen, Burhan
    Avuç içi tanıma sistemi, güvenilir ve doğru bir biyometrik tanıma sistemi olarak kabul edilir. Biyometrik yaklaşımlı avuç içi tanıma sistemi, diğer modellerle karşılaştırıldığında yeni bir biyometrik özellik olduğundan son zamanlarda araştırmacıların ilgisini çekmektedir. Bu çalışmada, Gabor dalgacık dönüşümü tabanlı avuç içi tanıma sistemi geliştirilmiştir. İlk olarak, özellik çıkarımın da görüntü uyumunu kolaylaştırmak için koordinat sistemi belirlenmiştir. Sonra, ilgilenilen bölge avuç içi imgesinden alınmıştır. Geliştirilen sistem ile ilgilenilen bölgenin özellikleri çıkartılmış ve Çok katmanlı algılayıcı sınıflandırıcısına verilmiştir.