5 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 5 / 5
Öğe Wet chemical methods for producing mixing crystalline phase ZrO 2 thin film(Elsevier, 2016-07) Pakma, Osman; Özdemir, Cengiz; Kariper, İshak Afşin; Özaydın, Cihat; Güllü, ÖmerThe aim of the study is to develop a more economical and easier method for obtaining ZrO 2 thin films at lower temperature, unlike the ones mentioned in the literature. For this purpose, wet chemical synthesis methods have been tested and XRD, UV-VIS and SEM analysis of ZrO 2 thin films have been performed. At the end of the analysis, we identified the best method and it has been found that the features of the films produced with this method were better than the films produced by using different reagents, as well as the films reported in the literature. Especially it has been observed that the transmittance of the film produced with this method were higher and better than the films in the literature and the others. In addition, refractive index of the film produced with this method was observed to be lower. Moreover, by using the same method Al/ZrO 2 /p-Si structure has been obtained and it has been compared with Al/p-Si reference structure in terms of electrical parameters.Öğe PowSysGUI: A new educational software package for power system stability studies using MATLAB/Simulink(SAGE, 2017-10-01) Ekinci, Serdar; Demirören, Ayşen; Zeynelgil, Hatice LaleGraphical user interfaces have been progressively used in the classrooms to provide users of computer simulations with a friendly and visual approach to specify all input parameters with enhanced configuration flexibility. In this paper, an educational software package called PowSysGUI (Power System GUI), which runs on MATLAB and uses graphical user interfaces, has been developed for analysis and simulation of small to large size electric power systems. PowSysGUI is open-source software and anyone can see the inner structure of the program to figure out how to code a power engineering problem. It is designed as a simulation tool for researchers and educators, as it is simple to use and modify. PowSysGUI has algorithms for solving power flow, small signal stability analysis, and time-domain simulation. In the case studies, IEEE 16-machine 68-bus test system is given to show the features of the developed software tool. Moreover, classroom experience has shown that the developed software package helps in consolidating a better understanding of power system stability phenomena.Öğe Characterization of an Au/n-Si photovoltaic structure with an organic thin film(Elsevier, 2013-08) Özaydın, Cihat; Akkılıç, Kemal; İlhan, Salih; Rüzgar, Şerif; Güllü, Ömer; Temel, HamdiWe demonstrate that a copper(II) organic complex can control the electrical characteristics of conventional Au/n-Si metal-semiconductor (MS) contacts. We investigated the electronic and photovoltaic properties of a Cu(II) complex/n-Si heterojunction diode. The ideality factor n and barrier height Φb of the diode were 2.22 and 0.736 eV, respectively. An ideality factor greater than unity indicates that the diode exhibits non-ideal current-voltage behavior. This behavior results from the effect of series resistance and the presence of an interfacial layer. The series resistance and barrier height determined using Norde's method were 6.7 kΩ and 0.77 eV, respectively. The device showed photovoltaic behavior, with a maximum open-circuit voltage of 0.24 V and a short circuit current of 1.7 μA under light of 8 mW/cm2.Öğe Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system(IEEE, 2019-03-22) Ekinci, Serdar; Hekimoğu, BaranThis paper proposes a novel tuning design of proportional integral derivative (PID) controller via an improved kidney-inspired algorithm (IKA) with a new objective function. The main objective of the proposed approach is to optimize the transient response of the AVR system by minimizing the maximum overshoot, settling time, rise time and peak time values of the terminal voltage, and eliminating the steady state error. After obtaining the optimal values of the three gains of the PID controller (K P , K I , and K D ) with the proposed approach, the transient response analysis was performed and compared with some of the current heuristic algorithms-based approaches in literature to show the superiority of the optimized PID controller. In order to evaluate the stability of the automatic voltage regulator (AVR) system tuned by IKA method, the pole/zero map analysis and Bode analysis are performed. Finally, the robustness analysis of the proposed approach has been carried out with variations in the parameters of the AVR system. The numerical simulation results demonstrated that the proposed IKA tuned PID controller has better control performances compared to the other existing approaches. The essence of the presented study points out that the proposed approach may successfully be applied for the AVR system.Öğe Detection of Parkinson's disease by Shifted One Dimensional Local Binary Patterns from gait(Elsevier, 2016-09) Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan; Almalı, Mehmet NuriThe Parkinson's disease (PD) is one of the most common diseases, especially in elderly people. Although the previous studies showed that the PD can be diagnosed by expert systems through its cardinal symptoms such as the tremor, muscular rigidity, disorders of movements and voice, it was reported that the presented approaches, which utilize simple motor tasks, were limited and lack of standardization. To achieve a standard approach in PD detection, an approach, which is built on shifted one-dimensional local binary patterns (Shifted 1D-LBP) and machine learning methods, was proposed. Shifted 1D-LBP is built on 1D-LBP, which is sensitive to local changes in a signal. In 1D-LBP the positions of neighbors around center data are constant and therefore, the number of patterns that can be exacted by it is limited. This drawback was solved by Shifted 1D-LBP by changeable positions of neighbors. In evaluation and validation stages, the Gait in Parkinson's Disease (gaitpdb) dataset, which consists of three gait datasets that were recorded in different tasks or experiment protocols, were employed. Statistical features were exacted from formed histograms of gait signals transformed by Shifted 1D-LBP. Whole features and selected features were classified by machine learning methods. Obtained results were compared with statistical features exacted from signals in both time and frequency domains and results reported in the literature. Achieved results showed that the proposed approach can be successfully employed in PD detection from gait. This work is not only an attempt to develop a PD detection method, but also a general-purpose approach that is based on detecting local changes in time ordered signals.