Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Silicon MIS diodes with Cr2O3 nanofilm Optical morphological structural and electronic transport properties
    (Elsevier, 2010-04-15) Güllü, Ömer; Erdoğan, İbrahim Yasin
    In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV–vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current–voltage and capacitance–voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.
  • Öğe
    Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer
    (Scientific Publishers, 2019) Güllü, Ömer; Çankaya, Murat; Rajagopal Reddy, Varra
    In the present work, the surface morphology, structural and optical features of graphene oxide (GO) films are investigated. The Al/GO/n-InP MIS diode is formed by depositing GO layer on n-InP wafer for the barrier enhancement. Interfacial properties of the MIS diode with GO interlayer are extracted from current–voltage (I–V) measurement. The simple diode parameters such as barrier height and ideality factor are extracted from I–V plots, and the values are compared with those of conventional Al/n-InP MS contact. The value of barrier height (BH) for the Al/GO/n-InP contact is found as 0.85 eV. The BH value of 0.85 eV of the Al/GO/n-InP MIS structure is as high as around 100% compared to the value of 0.43 eV of the Al/n-InP reference contacts. We have showed that the value of 0.85 eV is one of the highest values presented for reference contacts with an interlayer.
  • Öğe
    Optical and structural properties of CuO nanofilm Its diode application
    (Elsevier, 2010-03-04) Güllü, Ömer; Erdoğan, İbrahim Yasin
    The high crystalline CuO nanofilms have been prepared by spin coating and annealing combined with a simple chemical method. The obtained films have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–vis (UV–vis) spectroscopy and photoluminescence (PL) spectroscopy. Structural analysis results demonstrate that the single phase CuO on Si (1 0 0) substrate is of high a crystalline structure with a dominant in monoclinic (1 1 1) orientation. FT-IR results confirm the formation of pure CuO phase. UV–vis absorption measurements indicate that the band gap of the CuO films is 2.64 eV. The PL spectrum of the CuO films shows a broad emission band centered at 467 nm, which is consistent with absorption measurement. Also, Au/CuO/p-Si metal/interlayer/semiconductor (MIS) diodes have been fabricated. Electronic properties (current–voltage) of these structures were investigated. In addition, the interfacial state properties of the MIS diode were obtained. The interface-state density of the MIS diode was found to vary from 6.21 × 1012 to 1.62 × 1012 eV−1 cm−2.