Arama Sonuçları

Listeleniyor 1 - 10 / 48
  • Öğe
    N-type InP Schottky diodes with organic thin layer: Electrical and interfacial properties
    (Journal of Vacuum Science & Technology B, 2010-03) Güllü, Ömer; Turut, Abdulmecit
    The rectifying junction characteristics of methyl red (MR) organic film on n-type InP substrate have been studied. It has been observed that MR-based structure shows an excellent rectifying behavior and that the MR film increases the effective barrier height by influencing the space charge region of the n-type InP. The barrier height and ideality factor values for this structure have been obtained as 0.75 eV and 1.93 from the forward bias current-voltage characteristics, respectively. By using capacitance-voltage characteristics at 1 MHz, the barrier height and the carrier concentration values have been calculated as 0.93 eV and 5.13×1015 cm−3, respectively. The energy distributions of the interface states and their relaxation times have been determined from the forward bias capacitance-frequency and conductance-frequency characteristics. Moreover, it was seen that both the interface-state density and the relaxation time of the interface states decreased with bias voltage from experimental results.
  • Öğe
    Numerical and experimental investigation of solar chimney power plant system performance
    (Taylor & Francis, 2020-03-15) Karakaya, Hakan; Durmuş, Aydın; Avcı, Ali Serkan
    A prototype of a solar chimney power plant was performed by modeling in this study. The performed prototype was experimentally confirmed. Temperature, velocity, and radiation values were measured to actualize the confirmation. Experimental data that were obtained to determine the performance of solar chimney whose prototype was actualized by the help of measured values were computationally analyzed. The geometry of a solar chimney in the analysis was bidimensionally (2D) drawn on an axis of symmetry. The numerical simulation was analyzed with computational fluid dynamics (CFD) method. Since analysis results show that there is turbulent flow in system (RNG), k-ɛ turbulence model was used. Continuity, momentum, and energy equations were applied to the solar chimney system via the finite volume method. Moreover, DO (discrete ordinates) model was inserted in analysis to evaluate the radiation effect in the collector area. In addition to all these, correlation results between SPSS 17 statistics program and data obtained were evaluated. Finally, with reference to the comparison between numerical and experimental results, data obtained and numerical data are close to each other; the prototype is applicable to the real systems.
  • Öğe
    Investigation of low velocity impact behaviors of honeycomb sandwich composites
    (SpringerLink, 2018-08-09) Topkaya, Tolga; Solmaz, Murat Yavuz
    Honeycomb sandwich composites are used as significant structural members in advanced engineering applications. Thus, it is critical to determine how they behave under impact loading, in addition to other loads. In this study, low velocity impact loading behaviors of honeycomb sandwich composites were experimentally investigated. Almost all of the design parameters of honeycomb sandwich composites were investigated. The results indicated that the core thickness of honeycomb had no effect on the strength of the composite, and the parameter influencing the impact behavior of the specimen the most was the face sheet thickness. When the face sheet thickness of the specimen was increased, the most apparent strength increase was observed in the models using carbon fiber-reinforced composite face sheets. For all face sheet types subject to impact energy of 10 Joules, the upper face sheets of 0.5 mm-thick specimens were perforated
  • Öğe
    Effects of ethanol addition to biodiesel fuels derived from cottonseed oil and its cooking waste as fuel in a generator diesel engine
    (Taylor & Francis, 2020-03) Karakaya, Hakan
    Exploration of energy sources such as renewable and non-edible vegetable oils has been continued during the recent two decades of 2000s. Cottonseed oil is a non-edible, abundant oil and is generally used as cooking oil. In the present study, the usability of biodiesel derived from both cottonseed oil and its cooking wastes was investigated by blending them with ULSD or ethanol in 50 percentages. B50, WB50, B50E50 and WB50E50, biodiesel and ethanol-contained fuels and ULSD were prepared for experiments. Combustion, performance, and emissions tests were conducted on a diesel engine used for power-producing electrical generator. In the combustion tests, cylinder pressure, HRR, CHR, MGT, and MFB were analyzed while MFC, BSFC, exhaust manifold temperature, and thermal efficiency were obtained in the performance tests. In the emissions tests, CO, HC, and NOx emissions were measured and compared with the results of ULSD. Combustion and performance findings of ULSD contained biodiesel blends were found more similar to those of ULSD. The duration of combustion stage can clearly be seen to be narrowed for ethanol-contained blend because of the rabid combustion characteristics of ethanol. Besides, the peak of HRR was found 10% higher for B50E50 while it was found averagely 8% for WB50E50 blends. NOx emissions were found 48% lower averagely for ethanol contained biodiesel blends that it is the most important finding of ethanol using with biodiesel. Besides, HC emissions were also found about 75% for biodiesel contained diesel fuel blends.
  • Öğe
    Milling Inconel 718 workpiece with cryogenically treated and untreated cutting tools
    (SpringerLink, 2021-07-17) Gürbüz, Hüseyin; Baday, Şehmus
    Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces, and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness, and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02- 0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration, and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration, and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated. Also, in this study, the statistical validity of the experimental values was tested with the help of secondorder equations and analyses of variance (ANOVA). R2 values obtained as 99.14%, 99.76%, and 97.98% for vibration, surface roughness, and feed force values were modeled statistically with the help of second-order equations, respectively.
  • Öğe
    Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints
    (Taylor & Francis, 2013-11) Topkaya, Tolga; Solmaz, Murat Yavuz
    One of the important processes in structural design is the joining technique. Failure of composite joints involves different failure mechanisms depending upon the joining technique. In this study, a progressive failure analysis was performed on adhesively, riveted, and hybrid bonded double-lap joints. In the joints, a woven-type fiberglass-reinforced composite material was used as the main material; AV 2015 was used as the adhesive, and steel as the rivet material. The analyses were performed using ANSYS 12.1 finite element package software via software written using parametric design language (APDL) codes. At the end of the progressive failure analysis, failure loads and failure modes were determined for 30-, 45-, and 60-mm overlap lengths in accordance with the Maximum Shear Stress Theory and Hashin Criteria. For 45-mm overlap lengths, the joint strength of hybrid joints proved to be 2.72 and 1.145 times higher, respectively, than adhesive and fastening joints. Results showed that the failure load of the joint increased when the overlap length increased. In riveted joints, the failure occurring in the composite plates began around the rivet hole and the catastrophic failure of these types of joints resulted from fiber tensile failure.
  • Öğe
    Effect of welding parameters on microstructure and mechanical properties of AA7075/AA5182 alloys joined by TIG and MIG welding methods
    (SpringerLink, 2020) Çelik, Yahya Hışman; Temiz, Şemsettin; Çetkin, Edip
    In this study, V and X welding grooves were opened to the forehead positions of the AA5182 and AA7075 aluminum alloy pairs and these alloy pairs were joined with tungsten inert gas (TIG) and metal inert gas (MIG) methods. Three diferent welding currents were used in joints. Gas fow rates of 12 and 17 l/min at the TIG welding and wire feed rates of 38 and 45 cm/min at MIG welding were selected. The efect of the welding grooves, welding current, gas fow rate and wire feed rate on microstructure and mechanical properties were investigated. Microstructures of welding zones were analyzed by an optical microscope and a scanning electron microscope (SEM). Vickers hardness of these zones was also measured. In addition, tensile and fatigue tests were carried out. Fracture mechanisms of failed specimens were conducted after the tensile tests were examined by using SEM. The highest hardness, tensile and fatigue strengths were obtained from the alloy pairs joined by opening X welding groove with TIG welding method. These values were 89 HV, 262.87 MPa, and 131.5 MPa, respectively. Similarly, the lowest tensile and fatigue strengths were obtained from the alloy pairs joined by opening V welding groove in the TIG welding method. These values were, respectively, 94.48 MPa and 19.1 MPa. However, the minimum hardness value was measured as 58 HV from the alloy pairs joined by opening V welding groove with MIG welding methods. In addition, it was observed on the fracture surfaces that the grain distributions and mechanisms difered depending on the welding methods, welding groove, and welding parameters.
  • Öğe
    Assessment of heavy metal pollution of urban soils of Batman by multiple pollution indices
    (Taylor & Francis, 2021-03-28) Baran, Hacı Alim; Gümüş Kıral, Nurcan
    Heavy metal accumulation is observed in urban soils, sometimes due to anthropological effects and sometimes due to natural geological units. In order to determine the heavy metal content of the Upper MioceneLower Pliocene Selmo Formation, which is observed in the whole study area and consists of conglomerate, sandstone and silt stone, soil and river sediment samples were taken. Within the scope of pollution assessment, geo-accumulation index (Igeo), enrichment factor (EF) and pollution index (PI) calculations of Batman urban soil samples were made and different degrees of pollution values were determined. High pollution values were obtained for As, Mo and Sb elements in all pollution indices calculated. The pollution levels of the three elements were determined as strongly to extremely contaminated according to Igeo values, the others except As (very severe enrichment) according to EF values were determined as severe enrichment, and according to PI, all three were determined as strong polluted. Pollution and element distribution maps were created with a geographical information system software. According to the results of correlation analysis and cluster analysis, the elements found to be contaminated are divided into two groups, whose locations and sources of contamination are different. The first group (Sn, Zn and Pb) is observed in the approximate centre of the study area and developed due to traffic emissions. The elements belonging to the second group (especially As, Mo and Sb) show high pollution values in the south-southeast of the study area. These pollutions are thought to be caused by the inadequate storage of mineral oils and batteries that are changed in the industrial site and from leaks in the oil production, storage, refining and transmission phase in TPAO, TÜPRAŞ and BOTAŞ. The analysed samples were compared with the Soil Pollution Control Regulation and WHO standards, and Co, Ni and As element values were found to exceed the permissible values for health
  • Öğe
    Electrical analysis of organic dye based MIS Schottky contacts
    (Microelectronic Engineering, 2010-05-25) Güllü, Ömer; Turut, Abdulmecit
    In this work, we prepared metal/interlayer/semiconductor (MIS) diodes by coating of an organic film onp-Si substrate. Metal(Al)/interlayer(Orange G@OG)/semiconductor(p-Si) MIS structure had a good recti-fying behavior. By using the forward-biasI–Vcharacteristics, the values of ideality factor (n) and barrierheight (BH) for the Al/OG/p-Si MIS diode were obtained as 1.73 and 0.77 eV, respectively. It was seen thatthe BH value of 0.77 eV calculated for the Al/OG/p-Si MIS diode was significantly larger than the value of0.50 eV of conventional Al/p-Si Schottky diodes. Modification of the potential barrier of Al/p-Si diode wasachieved by using thin interlayer of the OG organic material. This was attributed to the fact that the OGorganic interlayer increased the effective barrier height by influencing the space charge region of Si. Theinterface-state density of the MIS diode was found to vary from 2.79x1013to 5.80x1012eVx1cmx2.
  • Öğe
    Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies
    (Journals & Books, 2021-03) Ekinci, Selma; İlter, Zülfiye; Ercan, Selami; Çınar, Ercan; Çakmak, Reşit
    In this study, new, efficient, eco-friendly and magnetically separable nanoadsorbents, MNPs-G1-Mu and MNPs-G2-Mu, were successfully prepared by covalently grafting murexide-terminated polyamidoamine dendrimers on 3-aminopropyl functionalized silica-coated magnetite nanoparticles, and used for rapid removal of lead (II) from aqueous medium. After each adsorption process, the supernatant was successfully acquired from reaction mixture by the magnetic separation, and then analyzed by employing ICP-OES. Chemical and physical characterizations of new nanomaterials were confirmed by XRD, FT-IR, SEM, TEM, and VSM. Maximum adsorption capacities (qm) of both prepared new nanostructured adsorbents were compared with each other and also with some other adsorbents. The kinetic data were appraised by using pseudo-first-order and pseudo-second-order kinetic models. Adsorption isotherms were found to be suitable with both Langmuir and Freundlich isotherm linear equations. The maximum adsorption capacities for MNPs-G1-Mu and MNPs-G2-Mu were calculated as 208.33 mg g−1 and 232.56 mg g−1, respectively. Antimicrobial activities of nanoparticles were also examined against various microorganisms by using microdilution method. It was determined that MNPs-G1-Mu, MNPs-G2-Mu and lead (II) adsorbed MNPs-G2-Mu showed good antimicrobial activity against S. aureus ATTC 29213 and C. Parapsilosis ATTC 22019. MNPs-G1-Mu also showed antimicrobial activity against C. albicans ATTC 10231.