2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe Electrical analysis of organic dye based MIS Schottky contacts(Microelectronic Engineering, 2010-05-25) Güllü, Ömer; Turut, AbdulmecitIn this work, we prepared metal/interlayer/semiconductor (MIS) diodes by coating of an organic film onp-Si substrate. Metal(Al)/interlayer(Orange G@OG)/semiconductor(p-Si) MIS structure had a good recti-fying behavior. By using the forward-biasI–Vcharacteristics, the values of ideality factor (n) and barrierheight (BH) for the Al/OG/p-Si MIS diode were obtained as 1.73 and 0.77 eV, respectively. It was seen thatthe BH value of 0.77 eV calculated for the Al/OG/p-Si MIS diode was significantly larger than the value of0.50 eV of conventional Al/p-Si Schottky diodes. Modification of the potential barrier of Al/p-Si diode wasachieved by using thin interlayer of the OG organic material. This was attributed to the fact that the OGorganic interlayer increased the effective barrier height by influencing the space charge region of Si. Theinterface-state density of the MIS diode was found to vary from 2.79x1013to 5.80x1012eVx1cmx2.Öğe Barrier modification by methyl violet organic dye molecules of Ag p InP structures(European Journal of Interdisciplinary Studies, 2016-05) Güllü, ÖmerThis work includes fabrication and electrical characterization of Metal/Interlayer/Semiconductor (MIS) structures with methyl violet organic film on p-InP wafer. Metal(Ag)/ Interlayer (methyl violet =MV)/Semiconductor(p-InP) MIS structure presents a rectifying contact behavior. The values of ideality factor (n) and barrier height (BH) for the Ag/MV/p-InP MIS diode by using the current-voltage (I-V) measurement have been extracted as 1.21 and 0.84 eV, respectively. It was seen that the BH value of 0.84 eV calculated for the Ag/MV/p-InP MIS structure was significantly higher than the value of 0.64 eV of Ag/p-InP control contact. This situation was ascribed to the fact that the MV organic interlayer increased the effective barrier height by influencing the space charge region of inorganic semiconductor. The values of diffusion potential and barrier height for the Ag/MV/p-InP MIS diode by using the capacitance-voltage (C-V) measurement have been extracted as 1.21 V and 0.84 eV, respectively. The interface-state density of the Ag/MV/p-InP structure was seen to change from 2.57×1013 eV-1cm-2 to 2.19×1012 eV-1cm-2