Arama Sonuçları

Listeleniyor 1 - 10 / 17
  • Öğe
    An exergy analysis of a concentric tube heat exchanger using hBN-water nanofluids
    (Inder Science Publishers, 2021) Budak Ziyadanoğulları, Neşe; Perçin, Süleyman
    This study investigated the effects of using nanofluids prepared with hexagonal boron nitride (hBN) nanoparticles on the thermal performance and pressure drop of a concentric tube heat exchanger. Experiments were carried out with water-hBN nanofluids for stable, dispersed, 0.01%, 0.1% and 1% volume concentrations, at different flow rates and Reynolds numbers under parallel and counter-flow conditions. When the experimental results were examined, the exergy loss was higher in the parallel-flow heat exchanger compared to the counter-flow heat exchanger. The highest exergy loss value was obtained for distilled water at the highest Reynolds number (Re = 8,700) for parallel flow operation at 170 W. The exergy loss of water at the highest Reynolds number (Re = 8,700) for parallel flow operation increased by 15.7%, 24.8% and 49.8% for hBN-water concentrations of 0.01%, 0.1% and 1%, respectively. Exergy loss of water at the highest Reynold number (Re = 8,700) for counter flow operation increased by 11.3%, 17.3% and 29.2% for hBN-water concentrations of 0.01%, 0.1% and 1%, respectively. When evaluating the exergy analysis of the system, exergy losses due to pressure drops were negligible for both flows (parallel and counter).
  • Öğe
    Hardness and wear behaviours of al matrix composites and hybrid composites reinforced with B 4 C and SiC
    (Springer Nature, 2019-01-15) Çelik, Yahya Hışman; Kılıçkap, Erol
    The conversion into the desired shape of the metal powders using Powder Metallurgy (PM) method enables economically mass productions. This case allows producing parts with complex and high dimensional accuracy with no machining. In this study the composites and hybrid composites with Al matrix were produced using PM method with different ratios B4C and SiC. Microhardness and wear experiments of the produced composites were investigated. Wear experiments were performed at a constant speed of 0.5 m/s, application loads of 5, 10 and 15 N and sliding distances of 250, 500, and 750 m. Then, SEM images of composites and hybrid composites were captured. The increase of the reinforcement ratio in the composites contributed to the increase of the hardness. The highest hardness value was computed as 58.7 HV from 16% B4C reinforced composite. In addition, the increase in the reinforcement ratio contributed to the increase of the wear resistance. The increase in the load and sliding distance also increased the wear. The minimum weight loss was calculated as 18 mg from 5 N load, 250 m sliding distance and 16% SiC reinforced composite.
  • Öğe
    Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants
    (Taylor & Francis, 2016-01) Topkaya, Tolga; Dündar, Serkan; Solmaz, Murat Yavuz; Yaman, Ferhan; Atalay, Yusuf; Saybak, Arif; Asutay, Fatih; Çakmak, Ömer
    The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland), which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N). The maximum stress values occurred in FIII (300 N) when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N) loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.
  • Öğe
    Plantago major protective effects on antioxidant status after administration of 7,12-dimethylbenz(a)anthracene in rats
    (Asian Pacific Organization for Cancer Prevention, 2011) Oto, Gökhan; Ekin, Suat; Özdemir, Hülya; Demir, Halit; Yaşar, Semih; Levent, Abdulkadir; Berber, İsmet; Kaki, Barış
    Aim: The present study was designed to evaluate effects of Plantago major extract on oxidative status in Wistar albino rats administrated 7,12-dimethylbenz(a)anthracene (DMBA). Methods: Rats were divided into three equal groups of 6 animals each: Group 1 controls, group 2 treated with DMBA (100 mg/kg, single dose) and group 3 receiving the DMBA and the aqueous extract at 100 mg/kg/d for 60 days. Results: Significant decrease in catalase (P<0.05), carbonic anhydrase (p≤0.01), reduced glutathione (GSH) (P<0.01) and total protein (P<0.01) values was observed in the DMBA group compared with the healthy controls and DMBA + Plantago major groups. Conclusion: The results suggest preventive effects of Plantago major on DMBA induced oxidative damage in Wistar albino rats that might be due to decreased free radical generation.
  • Öğe
    The characteristic diode parameters in Ti/p-InP contacts prepared by DC sputtering and evaporation processes over a wide measurement temperature
    (World Scientific, 2017-06) Ejderha, Kadir; Asubay, Sezai; Yıldırım, Nezir; Güllü, Ömer; Türüt, Abdülmecit; Abay, Bahattin
    The titanium/p-indium phosphide (Ti/p-InP) Schottky diodes (SDs) have been prepared by thermal evaporation and DC magnetron sputtering deposition. Then, their current-voltage (I-V) characteristics have been measured in the sample temperature range of 100-400K with steps of 20K. The characteristic parameters of both Ti/p-InP SDs have been compared with each other. The barrier height (BH) values of 0.824 and 0.847 at 300K have been obtained for the sputtered and the evaporated SDs, respectively. This low BH value for the sputtered SD has been attributed to some defects introduced by the sputtered deposition technique over a limited depth in to the p-type substrate. The BH of the evaporated and sputtered diodes has decreased with the standard deviations of 58 and 64mV obeying to double-Gaussian distribution (GD) in 220-400K range, respectively, and it has seen a more sharper reduction for the BHs with the standard deviations of 93 and 106 mV in 100-220K range. The Richardson constant values of 89.72 and 53.24A(Kcm)-2 (in 220-400K range) for the evaporated and sputtered samples, respectively, were calculated from the modified ln(I0/T2)-q2σs2/2k2T2 vs (kT)-1 curves by GD of the BHs. The value 53.24A(Kcm)-2 for the sputtered sample in high temperatures range is almost the same as the known Richardson constant value of 60A(Kcm)-2 for p-type InP.
  • Öğe
    A novel approach for extracting ideal exemplars by clustering for massive time-ordered datasets
    (TÜBİTAK, 2017-07-30) Ertuğrul, Ömer Faruk
    The number and length of massive datasets have increased day by day and this yields more complex machine learning stages due to the high computational costs. To decrease the computational cost many methods were proposed in the literature such as data condensing, feature selection, and filtering. Although clustering methods are generally employed to divide samples into groups, another way of data condensing is by determining ideal exemplars (or prototypes), which can be used instead of the whole dataset. In this study, first the efficiency of traditional data condensing by clustering approach was confirmed according to obtained accuracies and condensing ratios in 9 different synthetic or real batch datasets. This approach was then improved to be employed in time-ordered datasets. In order to validate the proposed approach, 23 different real time-ordered datasets were used in experiments. Achieved mean RMSEs were 0.27 and 0.29 by employing the condensed (mean condensed ratio was 97.17%) and the whole datasets, respectively. Obtained results showed that higher accuracy rates and condensing ratios were achieved by the proposed approach.
  • Öğe
    Separation, optimization, and quantification of cytokinins by a recently developed amide-embedded stationary phase
    (Taylor & Francis, 2017-07-06) Aral, Hayriye; Haşimi, Duygu; Aral, Tarık; Levent, Abdulkadir; Ziyadanoğulları, Berrin
    In this study, some plant growth regulators known as cytokinins [kinetin (K), zeatin (Z), thidiazuron (TDZ), benzylaminopurine (BAP), and dimethylallylaminopurine (AAP)] were separated by HPLC using an amide-embedded mixed-mode stationary phase which was synthesized by Aral et al. in recent years. The effect of mobile phase content, mobile phase pH, buffer concentration, and temperature on separation process was studied. In addition, a quantitative determination of cytokinins from Salvia limbata extract was studied, and some validation parameters such as limit of detection (LOD), limit of quantification (LOQ), and relative standard deviation (RSD) were calculated as a range of 0.03–0.1, 0.1–0.26 mg/L, and 0.03–0.08, respectively.
  • Öğe
    Investigation of the effect of different variables on strength of adhesive joints
    (WILEY, 2014-10-01) Adin, Hamit; Deniz, Mehmet Emin
    In this article, the tensile strength of different adhesive bonded joints under a tensile load was analyzed numerically. The effects of certain parameters, including the bonding length and bonding ratio, were investigated. For this reason, the epoxy adhesive was used. Joints were prepared with aluminum materials. The stress analyses were employed using the Finite Element Method (FEM). ANSYS (v.14.0.1) FEM tool was utilized to investigate the stress distribution characteristics of aluminum lap joint under tensile loading. Numerical results were found to be quite reasonable. The numerical results show that the influences of variations are very notable when the equivalent stresses are between 18 MPa and 20 MPa. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Öğe
    New inner product quasilinear spaces on interval numbers
    (Hindawi, 2016) Bozkurt, Hacer; Yılmaz, Yılmaz
    Primarily we examine the new example of quasilinear spaces, namely, "IRn interval space." We obtain some new theorems and results related to this new quasilinear space. After giving some new notions of quasilinear dependence-independence and basis on quasilinear functional analysis, we obtain some results on IRn interval space related to these concepts. Secondly, we present Is,Ic0,Il∞, and Il2 quasilinear spaces and we research some algebraic properties of these spaces. We obtain some new results and provide an important contribution to the improvement of quasilinear functional analysis.
  • Öğe
    A noninvasive time-frequency-based approach to estimate cuffless arterial blood pressure
    (TÜBİTAK, 2018-09-28) Ertuğrul, Ömer Faruk; Sezgin, Necmettin
    Arterial blood pressure (ABP) is one of the most vital signs in the prophylaxis and treatment of blood pressure-related diseases because raised blood pressure is the most significant cause of death and the second major cause of disability in the world. Higher ABP yields greater strain on arteries and these extra strains turn arteries into thicker, less flexible, and more narrow structures. This increases the possibility of having an artery busting or artery occlusion, which are the primary reasons for heart attacks, kidney disease, or strokes. In addition to its importance in monitoring cardiovascular homeostasis, measurement of ABP is imperative in surgical operations. In this study, a simple and effective approach was proposed to estimate ABP from electrocardiogram (ECG) and photoplethysmograph (PPG) signals by an extreme learning machine (ELM) and statistical properties of the ECG and/or PPG signals in the time-frequency domain. To evaluate and apply the proposed approach, the Cuffless Blood Pressure Estimation Dataset, which was published and shared by UCI, was employed. First, the statistical properties were extracted from ECG and PPG signals that were in the time-frequency domain. Later, extracted features were employed to estimate cuffless ABP for each subject by the ELM and some popular machine learning methods. Achieved results and reported results in the literature showed that the proposed approach can be successfully employed for estimating cuffless blood pressure (BP) from ECGs and/or PPGs. Additionally, with the proposed approach, the systolic BP, mean BP, and diastolic BP can be calculated simultaneously.