7 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 7 / 7
Öğe Atık kızartma yağı metil esterinin bir dizel motorunda motor performansı ve egzoz emisyonlarına etkisinin araştırılması(Fırat Üniversitesi, 2011-05) Aydın, Hüseyin; Behçet, Rasim; Aydın, Selman; İlkılıç, Cumali; Çakmak, AbdülvahapPetrolün sınırlı rezervleri vardır ve gün geçtikçe azalır. Çevre kirliliği ve zararlı yakıtların yanması sonucu ortaya çıkan emisyonlardır. petrol ürünü. Bu alternatif arayışını sürdürür Yukarıda bahsedilen iki temel sorunu çözmek için yakıtlar. Bunda alternatif bir yakıt kaynağı olduğu düşünüldüğünde, atık Yemeklik yağ üretilen biyodizel yakıtı dizel yakıtla karıştırıldı hacimce %25 (B25), %50 (B50) ve %80 (B80) oranlarında ve dizel motorda test edilmiştir. Karışımdan elde edilen test sonuçları yakıtlar, elde edilenlerle karşılaştırılarak sunuldu. dizel yakıt.Öğe Determination of performance and exhaust emissions properties of B75 in a CI engine application(Journals & Books, 2011-09) Aydın, Hüseyin; İlkılıç, CumaliIn this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2–3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.Öğe Exhaust emissions of a CI engine operated with biodiesel from rapeseed oil(Taylor & Francis, 2011-01-16) Aydın, Hüseyin; İlkılıç, CumaliIn this study, biodiesel was produced from rapeseed oil and was used in a single cylinder, naturally aspirated and direct-injected diesel engine as pure biodiesel (B100) and as a blend with standard diesel fuel by 20% biodiesel to 80% diesel fuel (B20). The diesel engine emissions and some performance parameters were investigated at fully loaded engine conditions. The effects of pure biodiesel and its blend with diesel fuel on emissions of carbon monoxide (CO), nitrogen oxides (NOx), carbon dioxide (CO2), and sulfur dioxide (SO2) were clarified. Results showed that biodiesel fuel is environmentally friendly since it reduced the emissions of CO, SO 2, and CO2 of engines at all speeds. Results also indicated that the pure biodiesel gave about 12% lower power and 20 to 25% higher fuel consumption as compared to diesel. However, the results were almost the same or slightly different from a blend of biodiesel-diesel and petroleum diesel fuel.Öğe Terebinth oil for biodiesel production and its diesel engine application(Journals & Books, 2015-08) Aydın, Hüseyin; İlkılıç, Cumali; Çılğın, ErdalIn this study, biodiesel was produced from terebinth oil by the well known transesterification process in the methyl alcohol environment. Terebinth is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The optimum conditions of transesterification process for biodiesel production are investigated in this study. A maximum of 77% biodiesel was produced with 20% methanol in presence of 1% sulphuric acid (H2SO4). The resulting biodiesel is quite similar to conventional diesel fuel in its main characteristics. The obtained biodiesel from terebinth oil was added to diesel fuel volumetrically by 10% and 50%. The fuel mixtures that obtained from the addition of 10% and 50% of biodiesel were named here as B10 fuel and B50 fuel. Performance and exhaust emissions of biodiesel in a compression ignition engine were experimentally investigated. Biodiesel blends have lowered power output with increased brake specific fuel consumption (Bsfc) probably due to the lower heating value of biodiesel. The engine experimental results showed that exhaust emissions including carbon monoxide (CO), carbon dioxide (CO2), and hydrocarbons (HC) were reduced for all biodiesel fuel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.Öğe Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine(Elsevier, 2010-02-02) Aydın, Hüseyin; İlkılıç, CumaliThe use of biodiesel as an alternative diesel engine fuel is increasing rapidly. However, due to technical deficiencies, they are rarely used purely or with high percentages in unmodified diesel engines. Therefore, in this study, we used ethanol as an additive to research the possible use of higher percentages of biodiesel in an unmodified diesel engine. Commercial diesel fuel, 20% biodiesel and 80% diesel fuel, called here as B20, and 80% biodiesel and 20% ethanol, called here as BE20, were used in a single cylinder, four strokes direct injection diesel engine. The effect of test fuels on engine torque, power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and CO, CO2, NOx and SO2 emissions was investigated. The experimental results showed that the performance of CI engine was improved with the use of the BE20 especially in comparison to B20. Besides, the exhaust emissions for BE20 were fairly reduced.Öğe Emissions from an engine fueled with biodiesel-kerosene blends(Taylor & Francis, 2011-01) Aydın, Hüseyin; Bayındır, Hasan; İlkılıç, CumaliBiofuels are renewable energy sources for internal combustion engines and they have low emissions. They are increasingly used as an alternative to petroleum fuels. In this work, three different fuel types, such as commercial diesel fuel (D2), 20% biodiesel and 80% diesel fuel called here as B20, and 80% biodiesel and 20% kerosene, called here as BK20, were used in a single cylinder, four stroke, direct injection compression ignition engine. Kerosene was used as an additive to approach the properties of biodiesel to D2. The effects of the blends on CO, NOx, and smoke emissions as well as on some of the performance parameter of the engine were investigated. The prepared fuel, BK20 blend, has almost the same fuel properties as conventional diesel fuel. The experimental results showed that the exhaust emissions for BK20 were fairly reduced as compared to diesel fuel as well as B20. Besides, the performance of CI engine was improved with the use of the BK20, especially in comparison to B20. Results suggest that the BK20 can be substituted to the petroleum-based diesel fuel in diesel engines.Öğe Biodiesel from safflower oil and its application in a diesel engine(Journals & Books, 2011-03) İlkılıç, Cumali; Aydın, Selman; Behçet, Rasim; Aydın, HüseyinSafflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.