71 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 10 / 71
Öğe Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends(Elsevier, 2017-02-05) Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfi; Aydın, HüseyinHigh percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.Öğe RCCI yanmalı motorda aspir biyodizeli karışımları ve benzin kullanımının orta yüklerde performans ve emisyon etkilerinin incelenmesi(Fırat Akademi A.Ş, 2017) Aydın, Hüseyin; Işık, Mehmet Zerrakki; Oktay, HasanDizel bir jeneratörde RCCI uygulamasının performans ve emisyonlar üzerine etkileri, yüksek reaktviteli (birincil yakıt) yakıt olarak aspir yağı biyodizeli ve dizel karışımları, düşük reaktiviteli yakıt olarak benzin kullanımıyla incelenmiştir. RCCI uygulaması ikincil bir yakıt enjeksiyon sisteminin emme manifolduyla irtibatlandırılmasıyla sağlanmıştır. Benzin RCCI uygulama oranı motorun toplam kütlesel yakıt tüketiminin %40'u ve %60'si oranında olup, PFI olarak önceden karıştırılmıştır. Testler dizel-jeneratör grubunun tam gücünün %50’ine karşılık gelen ve orta yükleme sayılacak sabit bir 7.2kW motor gücü ve 1500devir/dakikalık bir motor devri gerçekleştirildi. Dizel ile biyodizel karışımının amacı, yanmanın başlamasını kolaylaştırmak için birincil yakıtın reaktivitesini arttırmaktır. Motor alanındaki çalışmaların için en önemli performans ve emisyon parametreleri derinlemesine incelenmiş ve sonuçlar sunulmuştur. RCCI uygulamasında toplam yakıt tüketimi artmış, NOx emisyonları önemli ölçüde azalırken, CO ve HC emisyonları düşük oranda artmıştır.Öğe Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines(Elsevier, 2013) Aydın, HüseyinThe possibility of using pure vegetable oils in a thermally insulated diesel engine has been experimentally investigated. Initially, the standard diesel fuel was tested in the engine, as base experiment for comparison. Then the engine was thermally insulated by coating some parts of it, such as piston, exhaust and intake valves surfaces with zirconium oxide (ZrO2). The main purpose of engine coating was to reduce heat rejection from the walls of combustion chamber and to increase thermal efficiency and thus to increase performance of the engine that using vegetable oil blends. Another aim of the study was to improve the usability of pure vegetable oils in diesel engines without performing any fuel treatments such as pyrolysis, emulsification and transesterification. Pure inedible cottonseed oil and sunflower oil were blended with diesel fuel. Blends and diesel fuel were then tested in the coated diesel engine. Experimental results proved that the main purpose of this study was achieved as the engine performance parameters such as power and torque were increased with simultaneous decrease in fuel consumption (bsfc). Furthermore, exhaust emission parameters such as CO, HC, and Smoke opacity were decreased. Also, sunflower oil blends presented better performance and emission parameters than cottonseed oil blends.Öğe Etanol-biyodizel karışımlarının bir dizel motorunda motor performansına etkileri(Fırat Üniversitesi, 2011) Aydın, Hüseyin; Bayındır, Hasan; Yücel, Halit Lutfi; İlkılıç, Cumali; Ziyadanoğulları Budak, NeşeÖğe Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating(Journals & Books, 2015-04-05) Aydın, Hüseyin; Sayın, Cenk; Aydın, SelmanIn this study, biofuel was produced from residual frying oil of cottonseed and D2, B5 and B100 fuels were prepared in order to use in experiments. These fuels were tested in a single cylinder, four strokes, 3 LD 510 model Lombardini CI engine. Then the top surfaces of the piston and valves were coated with plasma spray coating method by using 100 μm of NiCrAl as lining layer and over this layer the same surfaces were coated with 400 μm of the mixture that consists of %88 ZrO2, %4 MgO and %8 Al2O3. After the coating process, above mentioned fuels were tested in the coated engine. Previously, same fuels had been tested in uncoated engine, at full load and various speeds. Performance, emission and combustion experiments were carried out in coated engine. By coating process, partial increases were observed in power, exhaust manifold temperature and engine noise, while partial decreases were seen in brake specific fuel consumption (Bsfc). Besides, partial reductions were found in carbon monoxide (CO), hydrocarbon (HC) and smoke opacity emissions, but partial increases were observed in nitrogen oxide (NOx) emissions. Cylinder gas pressure values were higher for coated engine. Moreover, heat releases were close to each other in both engines.Öğe Bir derleme olarak hafif alkollerin içten yanmalı motorlarda emisyon karakteristiği(IESS Publishing, 2019) Aydın, Hüseyin; Çelebi, YahyaÖğe Aspir ve kanola biyodizeli kullanımının egzoz emisyonu ve motor performansına etkilerinin incelenmesi(Küresel Mühendislik Çalışmaları Dergisi, 2016-04-01) Aydın, Hüseyin; Işık, Mehmet Zerrakki; Ziyadanoğulları Budak, Neşe; Oktay, Hasan; Bayındır, Hasan; Yücel, Halit LutfiBiodiesel fuel, which can be produced from crude or waste vegetable oil, is an important alternative renewable fuel for diesel engines. Particularly the use of vegetable oils for diesel engines has found an important place in several surveys. Biodiesel can be used alone, or blended with petrodiesel in any proportions. Biodiesel is suitable for usage at conventional diesel engines without modification. In this study, canola and safflower oil biodiesel methyl is realized by using the esterification method.. The produced biodiesels were blended in %(50) (in volume) with diesel fuel. The blends were tested in a four cycle, four cylinder Diesel engine. The effects of biodiesel addition to Diesel No. 2 on the performance and emissions of the engine were examined at full load. The resulting performance values were found to be similar to diesel fuel. In general, specific fuel consumption of biodiesel is higher than diesel at all engine loads. Significant difference between the exhaust temperature is not determined. AB50 biodiesel compared to diesel HC emissions at high loads began to decline. NOx, CO2 and O2 emissions ratio has increased at high loads for Biodiesel fuels. Experimental results showed that the produced biodiesels can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends.Öğe Atık kızartma yağı metil esterinin bir dizel motorunda motor performansı ve egzoz emisyonlarına etkisinin araştırılması(Fırat Üniversitesi, 2011-05) Aydın, Hüseyin; Behçet, Rasim; Aydın, Selman; İlkılıç, Cumali; Çakmak, AbdülvahapPetrolün sınırlı rezervleri vardır ve gün geçtikçe azalır. Çevre kirliliği ve zararlı yakıtların yanması sonucu ortaya çıkan emisyonlardır. petrol ürünü. Bu alternatif arayışını sürdürür Yukarıda bahsedilen iki temel sorunu çözmek için yakıtlar. Bunda alternatif bir yakıt kaynağı olduğu düşünüldüğünde, atık Yemeklik yağ üretilen biyodizel yakıtı dizel yakıtla karıştırıldı hacimce %25 (B25), %50 (B50) ve %80 (B80) oranlarında ve dizel motorda test edilmiştir. Karışımdan elde edilen test sonuçları yakıtlar, elde edilenlerle karşılaştırılarak sunuldu. dizel yakıt.Öğe Performance and emission analysis of cottonseed oil methyl ester in a diesel engine(Elsevier, 2010-03) Aydın, Hüseyin; Bayındır, HasanIn this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.Öğe Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends(Journals & Books, 2010-03) Aydın, Hüseyin; Hanbey, HazarMany studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil–50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil–80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 °C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO’s viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 °C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil.