Arama Sonuçları

Listeleniyor 1 - 9 / 9
  • Öğe
    Performance and emission analysis of cottonseed oil methyl ester in a diesel engine
    (Elsevier, 2010-03) Aydın, Hüseyin; Bayındır, Hasan
    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.
  • Öğe
    Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends
    (Journals & Books, 2010-03) Aydın, Hüseyin; Hanbey, Hazar
    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil–50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil–80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 °C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO’s viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 °C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil.
  • Öğe
    Effects of DME on performance and emissions of biodiesel in a diesel engine powered generator
    (İstanbul Teknik Üniversitesi, 2016-10) Aydın, Hüseyin; İşcan, Bahattin
    This paper investigates the effects of DME-biodiesel, biodiesel and diesel fuels on the performance and emission characteristics of a diesel engine powered electrical generator at idle and medium loads. In the tests 75% of the safflower oil biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME25 and D2 fuels were tested at idling and a medium loads and constant speed of 60% engine operation. CO, HC, NOx and CO2 emission were found and compared for test fuels at both idle and medium loads. In the performance tests, brake specific fuel consumption (bsfc), mass fuel consumption and thermal efficiency values were tested and compared for test fuels.
  • Öğe
    Bir dizel motorunda kanola yağı kullanımında ön-ısıtma işleminin egzoz emisyonlarına etkilerinin deneysel araştırılması
    (e-Journal of New World Sciences Academy, 2009-03-01) Aydın, Hüseyin; Öner, Cengiz; İlkılıç, Cumali; Hazar, Hanbey
    Bu çalışmanın amacı; bitkisel yağlardan olan kanola yağının önceden ısıtılarak bir dizel motorunda kullanımından kaynaklanan egzoz emisyonlarının nasıl değiştiğini incelemektir. Bu amaçla saf kanola yağı %20 ve %50 oranlarında dizel yakıtı ile karıştırılmış ve bu karışım yakıtlar dört zamanlı, tek silindirli ve hava soğutmalı bir dizel motorda kullanılmıştır. Karışım yakıtlar kullanım sırasında 100o C sıcaklığa kadar ısıtıldıktan sonra kullanılmış ve bu ön ısıtma işleminin dizel motorda ısıl verim, egzoz gazı sıcaklığı, NOx, CO ve duman emisyonlarına etkileri araştırılmıştır. Ön ısıtma işleminin CRO’ nun viskozitesini azalttığı ve daha uygun bir yakıt akışı sağlayarak emisyonlar üzerinde olumlu etki yaptığı sunucuna varılmıştır
  • Öğe
    Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine
    (Elsevier, 2010-02-02) Aydın, Hüseyin; İlkılıç, Cumali
    The use of biodiesel as an alternative diesel engine fuel is increasing rapidly. However, due to technical deficiencies, they are rarely used purely or with high percentages in unmodified diesel engines. Therefore, in this study, we used ethanol as an additive to research the possible use of higher percentages of biodiesel in an unmodified diesel engine. Commercial diesel fuel, 20% biodiesel and 80% diesel fuel, called here as B20, and 80% biodiesel and 20% ethanol, called here as BE20, were used in a single cylinder, four strokes direct injection diesel engine. The effect of test fuels on engine torque, power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and CO, CO2, NOx and SO2 emissions was investigated. The experimental results showed that the performance of CI engine was improved with the use of the BE20 especially in comparison to B20. Besides, the exhaust emissions for BE20 were fairly reduced.
  • Öğe
    Emissions from an engine fueled with biodiesel-kerosene blends
    (Taylor & Francis, 2011-01) Aydın, Hüseyin; Bayındır, Hasan; İlkılıç, Cumali
    Biofuels are renewable energy sources for internal combustion engines and they have low emissions. They are increasingly used as an alternative to petroleum fuels. In this work, three different fuel types, such as commercial diesel fuel (D2), 20% biodiesel and 80% diesel fuel called here as B20, and 80% biodiesel and 20% kerosene, called here as BK20, were used in a single cylinder, four stroke, direct injection compression ignition engine. Kerosene was used as an additive to approach the properties of biodiesel to D2. The effects of the blends on CO, NOx, and smoke emissions as well as on some of the performance parameter of the engine were investigated. The prepared fuel, BK20 blend, has almost the same fuel properties as conventional diesel fuel. The experimental results showed that the exhaust emissions for BK20 were fairly reduced as compared to diesel fuel as well as B20. Besides, the performance of CI engine was improved with the use of the BK20, especially in comparison to B20. Results suggest that the BK20 can be substituted to the petroleum-based diesel fuel in diesel engines.
  • Öğe
    Effects of DME addition to biodiesel on combustion, performance and emissions of a diesel engine at idle and medium loads
    (Makine Teknolojileri Elektronik Dergisi, 2016) Aydın, Hüseyin; İşcan, Bahattin
    The effects of using dimethyl ether (DME) on the combustion, performance and emission parameters of biodiesel in a diesel engine operating at idle and medium loads that was used to drive an electrical power generator were experimentally investigated. Biodiesel was produced from safflower oil. 75% of the biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME25 and ultra-low sulfur diesel fuel (D2) was used as test fuels. Experiments were carried out at constant loads of 60% and idle conditions. Cylinder pressure, heat release rate (HRR), cylinder pressure rise rate(CPRR) and mean gas temperature(MGT) variations of test fuels at both idle and 60% load conditions were presented here. It was found that peak values of derived pressure for all test fuel are similar while the positions of peak pressure were changed and was found earliest for D2. Similar trends were also observed for HRR, CPRR and MGT parameters. CO, HC, NOx and CO2 emission were found and compared for test fuels at both idle and medium loads. In the performance tests, brake specific fuel consumption (bsfc), mass fuel consumption and thermal efficiency values were tested and compared for test fuels.
  • Öğe
    The effects of gasoline RCCI application on combustion of diesel generator at medium loads
    (Dicle University, 2019) Oktay, Hasan; Aydın, Hüseyin; Işık, Mehmet Zerrakki
    RCCI uygulamasının dizel jeneratörde aspir yağı biyodizel-dizel karışımları ile etkileri deneysel olarak incelenmiştir. Yapılan deneylerde, aspir yağı türevi biyodizel ve dizel karışımları birincil yakıt olarak ve ikincil reaktif yakıt olarak benzin olarak kullanılmıştır. RCCI uygulaması, emme manifolduna sahip bir ikincil yakıt enjeksiyon sisteminin bağlanmasıyla sağlandı. Gasoline, kütle yakıt tüketiminin % 40'i ve% 55'i oranında PFI olarak önceden karıştırılmıştır. Testler, 1500 rpm'lik sabit motor hızında ve sabit yük 7.2 kW motor gücünde gerçekleştirilmiştir. Yüksek fren özgül yakıt tüketimi (bsfc) ve egzoz çıkışı emisyonları için bir çözüm bulmak çok önemlidir. Dizel ve biyodizel karışımlarını kullanmanın amacı, yanmanın başlamasını kolaylaştıran birincil yakıtın reaktivitesini arttırmaktır. Motor çalışmasının önemli yanma, parametreleri kapsamlı bir şekilde araştırılmış ve sonuçlar sunulmuştur.
  • Öğe
    The effects of gasoline RCCI application on the performance and emission of diesel generator at medium loads
    (Dicle University, 2019) Oktay, Hasan; Aydın, Hüseyin; Işık, Mehmet Zerrakki
    RCCI uygulamasının dizel jeneratörde aspir yağı biyodizel-dizel karışımları kullanımındaki etkileri deneysel olarak incelenmiştir. Yapılan deneylerde, aspir yağı biyodizeli ve dizel karışımları birincil yakıt olarak, ikincil reaktif yakıt olarak benzin kullanılmıştır. RCCI uygulaması, emme manifolduna sahip bir ikincil yakıt enjeksiyon sisteminin bağlanmasıyla sağlandı. Benzin, motorun toplam kütle yakıt tüketiminin% 35'i ve% 55'i oranında PFI olarak önceden karıştırılmıştır. Testler, 1500 rpm'lik sabit motor hızında ve sabit yük 7.2 kW motor gücünde gerçekleştirilmiştir. Dizel motorlar genellikle orta ve yüksek yük koşullarında kullanılır. Oldukça yüksek fren özgül yakıt tüketimi (bsfc) ve egzoz çıkışı emisyonları için bir çözüm bulmak çok önemlidir. Dizel ve biyodizel karışımlarını kullanmanın amacı, yanmanın başlamasını kolaylaştıran birincil yakıtın reaktivitesini arttırmaktır. Motor çalışmasının önemli parametresi olan performans ve emisyonlar kapsamlı bir şekilde araştırılmış ve sonuçlar sunulmuştur.