4 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 4 / 4
Öğe Voltammetric behavior of acebutolol on pencil graphite electrode: highly sensitive determination in real samples by square‑wave anodic stripping voltammetry(Iranian Chemical Society, 2017-08-22) Levent, AbdulkadirIn this work, an electrochemical investigation of acebutolol (ACE), a beta-blocker drug, was carried out in alkaline medium using pencil graphite (PG) electrode. In cyclic voltammetry, the compound displayed a reversible and adsorption-controlled oxidation peak. By using squarewave anodic stripping voltammetry, the oxidation peak current observed at +0.78 V showed a linear relationship with concentration at 0.4–7 nM interval in Britton–Robinson bufer (pH 10.0) and a detection limit of 0.09 nM. The relative standard deviation of 4.72% for the concentration level of 2.0 nM (n = 11) was also calculated. The PG electrode that is used for the frst time in this method was successfully applied to determine the ACE in pharmaceutical formulations and urine.Öğe New voltammetric strategy for determination and electrochemical behaviors of metformin by pencil graphite electrode(ICNTC, 2020) Altunkaynak, Yalçın; Yavuz, Ömer; Levent, AbdulkadirMetformin(MET), an oral antidiabetic drug commonly used in the treatment of diabetes, is a drug that increases insulin sensitivity in the biguanide group [1]. MET shows its pharmacological effect by lowering the glucose level in the blood. In the literature research, there are studies using electrochemical techniques for the analysis of MET in biological fluid and drug forms[1-6]. In this study, the electrochemical properties of MET, one of the drugs used in the treatment of diabetes, were performed using a pencil graphite electrode in NaOH (0.1 M) solution. This compound was recorded with an irreversible and diffusion controlled adsorption oxidation peak at approximately +1.28 V by cyclic voltammetry. With square wave stripping voltammetry, it was observed that the peak current signals of MET in the concentration range of 2.76-24.8 µM in 0.1M NaOH solution increased linearly. At a concentration of 2.76 µM (n = 9), the limit of detection and relative standard deviation were calculated as 9.03 nM (1.495 ngmL-1 ) and 3.25 %, respectively. This method has been successfully applied for MET analysis in pharmaceutical preparations and urine samples without any separation.Öğe Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples(TÜBİTAK, 2018-04-27) Levent, Abdulkadir; Önal, GünayA pencil graphite electrode (PGE) was used for the simultaneous detection of ascorbic acid (AA), norepinephrine (NE), and uric acid (UA) by differential pulse voltammetry and cyclic voltammetry. The anodic peaks of AA, NE, and UA in their mixture can be well separated in 0.1 M Britton–Robinson buffer solution at pH 4.0. The effects of various experimental parameters such as pH, scan rate, and voltammetric parameters on the voltammetric response of these compounds were investigated. Under optimum conditions, linear calibration graphs were obtained from the AA, NE, and UA concentration ranges, which were 100–800 nM, 20–170 nM, and 40–175 nM, respectively. The detection limits for AA, NE, and UA were 27 nM, 4 nM, and 10 nM in the form of a mixture at the PGE. This electrode shows great analytical performance characteristics, corresponding repeatability and recovery for the simultaneous determination of these compounds. PGE, which was used for the first time in this method, has been successfully applied for the assay of UA in human urine samples with the aim of determining AA and NE in pharmaceutical drugs.Öğe Electrochemical oxidation of vildagliptin on pencil graphite electrode: Extremely sensitive determination in drugs and human urine with square wave voltammetry(ICNTC, 2020) Altunkaynak, Yalçın; Yavuz, Ömer; Levent, AbdulkadirVildagliptin (VLDG), one of the antidiabetic agents, is a dipeptidyl peptidase 4 inhibitor. It is a drug developed for oral administration[1]. In the literature, there is only one study in which electrochemical methods were used for the analysis of Vildagliptin in biological fluid and drug forms[2]. In this study, the electrochemical properties of VLDG, which is one of the drugs used as an antidiabetic agent, were determined by using pencil graphite electrode in phosphate buffer solution (PBS/pH 9.0). The irreversible and diffusion controlled adsorption oxidation peak was measured by cyclic voltammetry at approximately +1.13 V for this compound. Using square wave stripping voltammetry, the current showed a linear correlation in PBS buffer at pH 9.0, with a concentration range of 2.94 to 49.98 µM. At a concentration of 2.94 µM (n=9), the limit of detection of 8.20 nM (2.48 ng mL-1 ) and a relative standard deviation of 2.95 % were calculated. This method was successfully applied for VLDG analysis without any separation in pharmaceutical preparations and urine samples