Arama Sonuçları

Listeleniyor 1 - 10 / 20
  • Öğe
    Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating
    (Journals & Books, 2015-04-05) Aydın, Hüseyin; Sayın, Cenk; Aydın, Selman
    In this study, biofuel was produced from residual frying oil of cottonseed and D2, B5 and B100 fuels were prepared in order to use in experiments. These fuels were tested in a single cylinder, four strokes, 3 LD 510 model Lombardini CI engine. Then the top surfaces of the piston and valves were coated with plasma spray coating method by using 100 μm of NiCrAl as lining layer and over this layer the same surfaces were coated with 400 μm of the mixture that consists of %88 ZrO2, %4 MgO and %8 Al2O3. After the coating process, above mentioned fuels were tested in the coated engine. Previously, same fuels had been tested in uncoated engine, at full load and various speeds. Performance, emission and combustion experiments were carried out in coated engine. By coating process, partial increases were observed in power, exhaust manifold temperature and engine noise, while partial decreases were seen in brake specific fuel consumption (Bsfc). Besides, partial reductions were found in carbon monoxide (CO), hydrocarbon (HC) and smoke opacity emissions, but partial increases were observed in nitrogen oxide (NOx) emissions. Cylinder gas pressure values were higher for coated engine. Moreover, heat releases were close to each other in both engines.
  • Öğe
    An analysis of biodiesel requirement, production and policies in Turkey
    (e-Journal of New World Sciences Academy, 2008-02-01) Aydın, Hüseyin; Bayındır, Hasan
    The development of alternative fuels from renewable resources, like biomass, has gained considerable attention in recent years. A biodiesel program would give many benefits in terms of generation of employment for poor/rural people, farmers, accelerate of starting many type of industries for developing countries like Turkey. This paper investigates current status of biodiesel in Turkey, advantages and disadvantages of biodiesel in diesel engines, annual diesel fuel consumption, import and export ratings and annual diesel fuel demand. The main focus of this paper is on Turkey’s current fuel status and to clarify Turkey’s biodiesel demand as alternative to fossil diesel fuel. Results show that Turkey is highly in need of alternative energies such as bio-fuels. That’s way it is recommended that Turkey should promote oilseed crops farming to the rise production of biodiesel.
  • Öğe
    Determination of performance and exhaust emissions properties of B75 in a CI engine application
    (Journals & Books, 2011-09) Aydın, Hüseyin; İlkılıç, Cumali
    In this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2–3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.
  • Öğe
    Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine
    (Elsevier, 2018-06-15) Aydın, Hüseyin; Çelebi, Yahya
    As our world demands more and more energy and fossil fuel resources are running out, searches onfindingalternative fuels in internal combustion engines are increasing. Alcohols and biofuels obtained from oils can beused as alternative diesel fuels. The present work investigated the effects ofn-butanol addition to safflowerbiodiesel usage in a diesel engine used for driving an electrical power generator. Safflower biodiesel was ob-tained by using transesterification method. Binary blends of butanol-biodiesel and ternary blends of ultra-lowsulfur diesel-biodiesel–butanol were contained 5%, 10%, and 20% butanol in volume basis. The tests werecarried out on a four-cylinder, four-strokes, and direct-injection diesel engine at half load operation with stableengine speed of 1500 rpm. Experimental test results on combustion characteristics, emission and performance ofthe fuels were investigated. According to test results, formation of heat release rates and in-cylinder pressurecurves were considerably similar and total heat transfer, average gas temperature and mass fraction burned wereslightly changed. The ternary blends showed lower emission and increased brake thermal efficiency up to 1.5%.Besides, average mass fuel consumption was increased up to 5% and brake specific fuel consumption up to 6%.For the other fuels, emission and brake thermal efficiency were deteriorated.
  • Öğe
    Effects of DME on performance and emissions of biodiesel in a diesel engine powered generator
    (İstanbul Teknik Üniversitesi, 2016-10) Aydın, Hüseyin; İşcan, Bahattin
    This paper investigates the effects of DME-biodiesel, biodiesel and diesel fuels on the performance and emission characteristics of a diesel engine powered electrical generator at idle and medium loads. In the tests 75% of the safflower oil biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME25 and D2 fuels were tested at idling and a medium loads and constant speed of 60% engine operation. CO, HC, NOx and CO2 emission were found and compared for test fuels at both idle and medium loads. In the performance tests, brake specific fuel consumption (bsfc), mass fuel consumption and thermal efficiency values were tested and compared for test fuels.
  • Öğe
    Biodiesel production from raw cottonseed oil and its characterization
    (Energy Education Science and Technolgy Part A, 2011-07) Altun, Şehmus; Yaşar, Fevzi; Öner, Cengiz
    In this study, raw cottonseed oil of Turkish origin was transesterified using methyl alcohol and an alkali catalyst to obtain the cottonseed oil methyl ester. The obtained cottonseed oil methyl ester was analyzed by gas chromatography (GC) for determining the fatty acid composition. The fuel-related properties of cottonseed oil methyl ester, cold filter plugging point, cloud point, kinematic viscosity, density, cetane index, flash point, distillation, sulfur content and heating value were determined and compared with those of petroleum diesel fuel and international biodiesel standards. From gas chromatograph analysis, it was found that the cottonseed oil methyl ester has the more amount of total unsaturated FA, therefore, it showed better cold-flow properties than more saturated ones, as expected. Moreover, the fuel-related properties of cottonseed oil methyl ester were within the specified standards
  • Öğe
    Usage of methyl ester produced from waste grape and Mn additive as alternative diesel fuel
    (Petru Maior” University of Tîrgu Mureş, 2017-01) Aydın, Hüseyin; Hanbey, Hazar; Uyar, Mahmut; Sap, Emine
    In this study, methyl ester was produced from waste grape pulp sources. The produced methyl ester was mixed with diesel in different proportions, and was tested for engine performance and emission. It was found that with increasing biodiesel content, the specific fuel consumption and exhaust temperature have increased partially, while the CO, HC and smoke emissions decreased significantly. Additionally, in the scope of this study, dodecanol, propylene glycol and Mn based additives were added to fuel B50 to improve the emission and engine performance values. With the presence of additives, an increase in the exhaust temperature was observed, while a decrease in the specific fuel consumption, CO, HC, and smoke emissions were detected
  • Öğe
    Terebinth oil for biodiesel production and its diesel engine application
    (Journals & Books, 2015-08) Aydın, Hüseyin; İlkılıç, Cumali; Çılğın, Erdal
    In this study, biodiesel was produced from terebinth oil by the well known transesterification process in the methyl alcohol environment. Terebinth is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The optimum conditions of transesterification process for biodiesel production are investigated in this study. A maximum of 77% biodiesel was produced with 20% methanol in presence of 1% sulphuric acid (H2SO4). The resulting biodiesel is quite similar to conventional diesel fuel in its main characteristics. The obtained biodiesel from terebinth oil was added to diesel fuel volumetrically by 10% and 50%. The fuel mixtures that obtained from the addition of 10% and 50% of biodiesel were named here as B10 fuel and B50 fuel. Performance and exhaust emissions of biodiesel in a compression ignition engine were experimentally investigated. Biodiesel blends have lowered power output with increased brake specific fuel consumption (Bsfc) probably due to the lower heating value of biodiesel. The engine experimental results showed that exhaust emissions including carbon monoxide (CO), carbon dioxide (CO2), and hydrocarbons (HC) were reduced for all biodiesel fuel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.
  • Öğe
    Combustion behavior of DME with biodiesel usage in a diesel engine powered generator at idle and medium loads
    (İstanbul Teknik Üniversitesi, 2016-10) Aydın, Hüseyin
    The effects of using dimethyl ether (DME) on the combustion parameters of biodiesel in a diesel engine that was used to drive an electrical power generator were experimentally investigated. Biodiesel was produced from safflower oil. 75% of the biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME75 and ultra-low sulfur diesel fuel (D2) was used as test fuels. Experiments were carried out at constant loads of 60% and idle conditions. Cylinder pressure, heat release rate (HRR), cylinder pressure rise rate(CPRR) and mean gas temperature(MGT) variations of test fuels at both idle and 60% load conditions were presented here. It was found that peak values of derived pressure for al test fuel are similar while the positions of peak pressure were changed and was found earliest for D2. Similar trends were also observed for HRR, CPRR and MGT parameters.
  • Öğe
    Fuel properties of biodiesels produced from different feedstocks
    (Energy Education Science and Technolgy Part A, 2011) Altun, Şehmus
    Bio diesel is an oxygenated diesel fuel obtained from vegetable oils or animal fats via transesterification reaction. The fuel properties such as viscosity, density, cetane number and heating value are very important for determining the suitability of bio diesel as a diesel engine fuel. These fuel properties mainly depend on the feedstock which is used in the bio diesel production. In this study, the effect of bio diesels produced from different feed stocks such as inedible animal tallow, crude canola oil and canola oil blended with animal tallow on the fuel properties were experimentally investigated. Bio diesel fuels and their blends with petroluem diesel fuel were compared with petroleum diesel (petrodiesel). The results showed that the viscosity and density of all the methyl esters were higher than that of petrodiesel, while the heating values of the methyl esters was lower. Besides, the viscosity and the density of methyl esters are within the bio diesel standards, except for animal tallow methyl ester and it was slightly out of the specification EN 14214. Animal tallow bio diesel has the highest cetane number than those of other fuels include petrodiesel. It is concluded that bio diesels and their blends with petrodiesel have suitable fuel properties, especially cetane numbers, for diesel combustion process.