Arama Sonuçları

Listeleniyor 1 - 10 / 11
  • Öğe
    Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating
    (Journals & Books, 2015-04-05) Aydın, Hüseyin; Sayın, Cenk; Aydın, Selman
    In this study, biofuel was produced from residual frying oil of cottonseed and D2, B5 and B100 fuels were prepared in order to use in experiments. These fuels were tested in a single cylinder, four strokes, 3 LD 510 model Lombardini CI engine. Then the top surfaces of the piston and valves were coated with plasma spray coating method by using 100 μm of NiCrAl as lining layer and over this layer the same surfaces were coated with 400 μm of the mixture that consists of %88 ZrO2, %4 MgO and %8 Al2O3. After the coating process, above mentioned fuels were tested in the coated engine. Previously, same fuels had been tested in uncoated engine, at full load and various speeds. Performance, emission and combustion experiments were carried out in coated engine. By coating process, partial increases were observed in power, exhaust manifold temperature and engine noise, while partial decreases were seen in brake specific fuel consumption (Bsfc). Besides, partial reductions were found in carbon monoxide (CO), hydrocarbon (HC) and smoke opacity emissions, but partial increases were observed in nitrogen oxide (NOx) emissions. Cylinder gas pressure values were higher for coated engine. Moreover, heat releases were close to each other in both engines.
  • Öğe
    Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends
    (Journals & Books, 2010-03) Aydın, Hüseyin; Hanbey, Hazar
    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil–50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil–80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 °C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO’s viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 °C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil.
  • Öğe
    The effects of injection pressure on the engine performance characteristics of a CI engine fueled with canola oil-diesel blends
    (Energy Education Science and Technology Part A: Energy Science and Research, 2012-01) Aydın, Hüseyin
    The usage of vegetable oils in diesel engines has some negative effects especially on engine performance. Therefore vegetable oils can not be used as pure form or with high percentages in diesel fuel in unmodified diesel engines. Some of the engine operation conditions should be improved by modifying engine operation systems for this purpose. The effects of injection pressure on engine performance of a diesel engine, by using two different blends of vegetable oil (canola oil) in diesel fuel (DF) having a concentration of 20% (O20) and 50% (O50) vegetable oil, were studied in the present work. The injection pressure was changed from 200 MPa to 220 MPa. Tests were made at fully loaded engine and different speeds of engine operation. In the experiments, the engine power, torque, brake specific fuel consumption (Bsfc), mass fuel consumption rate, brake thermal efficiency and exhaust gas temperature of the test engine have been investigated. Results revealed that the increased injection pressure can significantly promote performance parameters of diesel engine with using vegetable oil without any modification either in oil or in engine itself. The improved results of experiments have been given as graphics in this paper.
  • Öğe
    Determination of performance and exhaust emissions properties of B75 in a CI engine application
    (Journals & Books, 2011-09) Aydın, Hüseyin; İlkılıç, Cumali
    In this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2–3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.
  • Öğe
    Diesel engine applications for evaluation of performance and emission behavior of biodiesel from different oil stocks
    (Environmental Progress & Sustainable Energy, 2015-05) Aydın, Hüseyin; Behçet, Rasim; İlkılıç, Cumali; İşcan, Bahattin; Aydın, Selman
    Extensive researches on alternative fuels have been carried out since the fossil-based fuels are limited. Many of these studies have ever been on the usability of vegetable oils in diesel engines. In the current work, biodiesel were produced from waste fish oil (FOB), hazelnut oil (HOB), rapeseed oil (ROB), and waste cooking oil (WCOB) by transesterification method. The same optimized variables of 6:1 methanol/oil molar ratio (mol/mol), 0.4% sodium methoxide concentration (wt.%), 60°C reaction temperature, 1000 rpm agitation speed and 2 h reaction time conditions were performed for biodiesel production from all kinds of above mentioned oils. Some of the important chemical and physical properties of test fuels were found. Without making blends with diesel fuel, pure biodiesels were used in a diesel engine in order to clarify how their usage effects on engine performance and exhaust emission parameters. When compared with those of diesel fuel, average torque and power were reduced while brake specific fuel consumption was increased for biodiesels. Besides, carbon monoxide (CO), hydrocarbon (HC) emissions were considerably lower for biodiesel usage while oxides of nitrogen (NOx) emissions were higher than that of diesel fuel. Furthermore, emissions of carbon dioxide (CO2) and smoke opacity were reduced for biodiesel usage. Oxygen (O2) contained in the exhaust gases were higher for biodiesels while they contain more oxygen molecules in their structure
  • Öğe
    Terebinth oil for biodiesel production and its diesel engine application
    (Journals & Books, 2015-08) Aydın, Hüseyin; İlkılıç, Cumali; Çılğın, Erdal
    In this study, biodiesel was produced from terebinth oil by the well known transesterification process in the methyl alcohol environment. Terebinth is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The optimum conditions of transesterification process for biodiesel production are investigated in this study. A maximum of 77% biodiesel was produced with 20% methanol in presence of 1% sulphuric acid (H2SO4). The resulting biodiesel is quite similar to conventional diesel fuel in its main characteristics. The obtained biodiesel from terebinth oil was added to diesel fuel volumetrically by 10% and 50%. The fuel mixtures that obtained from the addition of 10% and 50% of biodiesel were named here as B10 fuel and B50 fuel. Performance and exhaust emissions of biodiesel in a compression ignition engine were experimentally investigated. Biodiesel blends have lowered power output with increased brake specific fuel consumption (Bsfc) probably due to the lower heating value of biodiesel. The engine experimental results showed that exhaust emissions including carbon monoxide (CO), carbon dioxide (CO2), and hydrocarbons (HC) were reduced for all biodiesel fuel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.
  • Öğe
    Wind power potential and usage in the coastal regions of Turkey
    (Journals & Books, 2015-04) Aydın, Hüseyin; İlkılıç, Cumali
    In this study, the potential of wind power in the coastal areas of Turkey have been studied. Current potential of the wind energy in coastal areas and its usage in Turkey have been investigated. The main purpose of this study is to investigate the wind energy plants in coastal regions of Black Sea, Marmara, Aegean and Mediterranean regions and project in Turkey. The wind energy potentials of all regions in Turkey have been investigated and utilization of the wind energy in coastal regions of Turkey was also studied. Various regions have been analyzed by taking wind data into account that had been measured in hourly time series in the windy locations. The coastal regions of Aegean, Marmara and East-Mediterranean have high wind energy potentials and wind densities. The wind data used in this study have been obtained taken from Electrical Power Resources Survey and Development Administration (EIEI) of Turkey. Istanbul, Izmir, Datça, Bandırma, Antakya, Çanakkale and Hatay areas have been found to be the most promising areas for wind energy systems with their wind densities. Sinop, Gökçeada, and Mersin follows these areas. It can be suggested the there are many suitable areas, for wind energy applications and investments, especially many of them are clustered in coastal regions in Turkey.
  • Öğe
    Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine
    (Journals & Books, 2011-05) Aydın, Hüseyin; İlkılıç, Cumali
    An alternative fuel production was performed by pyrolysis of waste vehicle tires under nitrogen (N2) environment and with calcium hydroxide (Ca(OH)2) as catalyst. The sulfur content of liquids obtained were reduced by using Ca(OH)2. The liquid fuel of waste vehicle tires(TF) was then used in a diesel engine to blend with petroleum diesel fuel by 5%(TF5), 10%(TF10), 15%(TF15), 25%(TF25), 35%(TF35), 50%(TF50), and 75%(TF75) wt. and pure (TF100). Performance characteristics such as engine power, engine torque, brake specific fuel consumption (bsfc) and exhaust temperature and emission parameters such as oxides of nitrogen (NOx), carbon monoxides (CO), total unburned hydrocarbon (HC), sulfur dioxides (SO2) and smoke opacity of the engine operation with TF and blend fuels of TF–diesel were experimentally investigated and compared with those of petroleum diesel fuel. It was concluded that the blends of pyrolysis oil of waste tires TF5, TF10, TF25 and TF35 can efficiently be used in diesel engines without any engine modifications. However, the blends of TF50, TF75 and TF100 resulted considerably to high CO, HC, SO2 and smoke emissions.
  • Öğe
    Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats
    (Journals & Books, 2015-06) Aydın, Hüseyin; Behçet, Rasim; Oktay, Hasan; Çakmak, Abdülvahap
    The present paper examines two biodiesels named as fish oil methyl ester (FOME) and chicken oil methyl ester (CFME) produced from low-cost waste fish and chicken oils using the transesterification method, and their fuel properties were compared to EN 14214 and ASTM D6751 biodiesel standards. Then, each methyl esters were blended with the commercial diesel fuel (D2) with a ratio of 20% on volume basis, respectively and two fuel samples named as FOB20 (20% Fish Oil Methyl Ester and 80% D2 fuel) and CFB20 (20% chicken oil methyl ester and 80% D2 fuel) were obtained. An experimental study for investigating the effects of the blended fuels on engine performance and its exhaust emissions was performed by using a single cylinder, four stroke, direct injection and air-cooled diesel engine at different speeds under full load. According to the test results, it was observed that the brake power, torque values and the carbon monoxide (CO), unburnt hydrocarbon (UHC) and carbon dioxide (CO2) concentrations of blended fuels decreased while the NOx concentration and brake specific fuel consumption (bsfc) values increased compared to diesel fuel.
  • Öğe
    Biodiesel from safflower oil and its application in a diesel engine
    (Journals & Books, 2011-03) İlkılıç, Cumali; Aydın, Selman; Behçet, Rasim; Aydın, Hüseyin
    Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.