23 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 10 / 23
Öğe N-type InP Schottky diodes with organic thin layer: Electrical and interfacial properties(Journal of Vacuum Science & Technology B, 2010-03) Güllü, Ömer; Turut, AbdulmecitThe rectifying junction characteristics of methyl red (MR) organic film on n-type InP substrate have been studied. It has been observed that MR-based structure shows an excellent rectifying behavior and that the MR film increases the effective barrier height by influencing the space charge region of the n-type InP. The barrier height and ideality factor values for this structure have been obtained as 0.75 eV and 1.93 from the forward bias current-voltage characteristics, respectively. By using capacitance-voltage characteristics at 1 MHz, the barrier height and the carrier concentration values have been calculated as 0.93 eV and 5.13×1015 cm−3, respectively. The energy distributions of the interface states and their relaxation times have been determined from the forward bias capacitance-frequency and conductance-frequency characteristics. Moreover, it was seen that both the interface-state density and the relaxation time of the interface states decreased with bias voltage from experimental results.Öğe Control of barrier heigth ofmetal/semiconductor contacts bymolecular organic film(2011-06) Güllü, Ömer; Turut, Abdulmecit; Kılıçoğlu, Tahsin; Özerden, EniseÖğe Characterization of Au N Inp photovoltaic structure with organic thin film(Uppsala University, 2012) Güllü, Ömer; Özerden, Enise; Rüzgar, Şerif; Asubay, Sezai; Pakma, Osman; Kılıçoğlu, Tahsin; Türüt, AbdulmecitÖğe Electrical analysis of organic dye based MIS Schottky contacts(Microelectronic Engineering, 2010-05-25) Güllü, Ömer; Turut, AbdulmecitIn this work, we prepared metal/interlayer/semiconductor (MIS) diodes by coating of an organic film onp-Si substrate. Metal(Al)/interlayer(Orange G@OG)/semiconductor(p-Si) MIS structure had a good recti-fying behavior. By using the forward-biasI–Vcharacteristics, the values of ideality factor (n) and barrierheight (BH) for the Al/OG/p-Si MIS diode were obtained as 1.73 and 0.77 eV, respectively. It was seen thatthe BH value of 0.77 eV calculated for the Al/OG/p-Si MIS diode was significantly larger than the value of0.50 eV of conventional Al/p-Si Schottky diodes. Modification of the potential barrier of Al/p-Si diode wasachieved by using thin interlayer of the OG organic material. This was attributed to the fact that the OGorganic interlayer increased the effective barrier height by influencing the space charge region of Si. Theinterface-state density of the MIS diode was found to vary from 2.79x1013to 5.80x1012eVx1cmx2.Öğe Electronic properties of the metal organic interlayer inorganic semiconductor sandwich device(Elsevier, 2010-03) Güllü, Ömer; Turut, Abdulmecit; Kılıçoğlu, TahsinIn this study, we prepared a Metal(Al)/Organic Interlayer(Congo Red=CR)/Inorganic Semiconductor (p-Si) (MIS) Schottky device formed by coating of an organic film on p-Si semiconductor wafer. The Al/CR/p-Si MIS device had a good rectifying behavior. By using the forward bias I–V characteristics, the values of ideality factor (n) and barrier height (Φb) for the Al/CR/p-Si MIS device were obtained as 1.68 and 0.77 eV, respectively. It was seen that the Φb value of 0.77 eV calculated for the Al/CR/p-Si MIS device was significantly higher than value of 0.50 eV of the conventional Al/p-Si Schottky diodes. Modification of the interfacial potential barrier of the Al/p-Si diode was achieved by using a thin interlayer of the CR organic material. This was attributed to the fact that the CR organic interlayer increased the effective barrier height by influencing the space charge region of Si. The interface-state density of the MIS diode was found to vary from 1.24×1013 to 2.44×1012 eV−1 cm−2.Öğe Current density-voltage analyses and interface characterization in Ag/DNA/p-InP structures(American Institute of Physics, 2012-02-15) Güllü, Ömer; Pakma, Osman; Türüt, AbdülmecitThe current density-voltage (J-V) characteristics of Ag/DNA/p-InP metal-insulator-semiconductor (MIS) structures have been investigated in room temperature. We have observed that the Ag/DNA/p-InP structure shows an excellent rectifying behavior and that this structure increases the barrier height (φ b0). The main electrical parameters of these structures, such as ideality factor (n), barrier height, and average series resistance values were found to be 1.087, 0.726 eV, and 66.92Ω. This value of n was attributed to the presence of an interfacial insulator layer at the Ag/p-InP interface and the density of interface states (N ss) localized at the InP/DNA interface. The values of N ss localized at the InP/DNA interface were found at 0.675-E v in the 1.38 × 10 12 eV -1 cm -2.Öğe Electrical properties of organic–ınorganic semiconductor device based on rhodamine-101(SpringerLink, 2009-05) Güllü, Ömer; Turut, Abdulmecit; Yıldırım, Nezir; Çakar, MuzafferRhodamine-101 (Rh101) thin films on n-type Si substrates have been formed by means of evaporation, thus Sn/Rh101/n-Si heterojunctions have been fabricated. The Sn/Rh101/n-Si devices are rectifying. The optical energy gaps have been determined from the absorption spectra in the wavelength range of 400 nm to 700 nm. Rh101 has been characterized by direct optical absorption with an optical edge at 2.05 ± 0.05 eV and by indirect optical absorption with␣an optical edge at 1.80 ± 0.05 eV. It was demonstrated that trap-charge-limited current is the dominant transport mechanism at large forward bias. A␣mobility value of μ = 7.31 × 10−6 cm2 V−1 s−1 for Rh101 has been obtained from the forward-bias current–voltage characteristics.Öğe Analysis of electrical and photoelectrical properties of ZnO/p-InP heterojunction(Elsevier, 2011-06) Ocak, Yusuf Selim; Kulakçı, Mustafa; Turan, Raşit; Kılıçoğlu, Tahsin; Güllü, ÖmerA ZnO/p-InP heterojunction has been fabricated by dc sputtering of ZnO on p-InP. It has been observed that the device has a good rectification. The electrical properties of the device such as ideality factor, barrier height, series resistance have been calculated using its current-voltage (I-V) measurements between 300 and 380 K with 20 K intervals. The short current density (Jsc) and open circuit voltage (Voc) parameters have been determined between 40 and 100 mW/cm2. The photovoltaic parameters of the device have been also determined under 100 mW/cm2 and AM1.5 illumination condition.Öğe Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures(Journal of Applied Physics, 2009-01) Güllü, Ömer; Turut, AbdulmecitIn this work, metal/interlayer/semiconductor (MIS) diodes formed by coating of an organic film to p-Si semiconductor substrate were prepared. Metal(Al)/interlayer (phenolsulfonphthalein=PSP)/semiconductor(p-Si) MIS device had a good rectifying behavior. By using the forward bias I-V characteristics, the values of ideality factor (n) and barrier height (Phi(b)) for the Al/PSP/p-Si MIS diode were obtained as 1.45 and 0.81 eV, respectively. It was seen that the Phi(b) value of 0.81 eV calculated for the Al/PSP/p-Si MIS diode was significantly larger than value of 0.50 eV of conventional Al/p-Si Schottky diodes. Modification of the interfacial potential barrier of Al/p-Si diode was achieved by using a thin interlayer of the PSP organic material. This has been attributed to the fact that the PSP organic interlayer increases the effective barrier height by influencing the space-charge region of Si. The interface-state density of the MIS diode was determined, and the interface-state density was found to vary from 3.00 x 10(13) to 2.99 x 10(12) eV(-1) cm(-2). (C) 2009 American Institute of Physics.Öğe A study of the rectifying behaviour of aniline green-based Schottky diode(Elsevier, 2010-02) Güllü, Ömer; Aydoğan, ŞakirAn Al/aniline green (AG)/Ga2Te3 device was fabricated and the current–voltage (I–V), capacitance–voltage (C–V) and capacitance–frequency (C–f) characteristics of the device have been investigated at room temperature. The values of the ideality factor, series resistance and barrier height obtained from Cheung and Norde methods were compared, and it was seen that there was an agreement with each other. It was seen that the forward bias current–voltage characteristics at sufficiently large voltages has shown the effect of the series resistance. In addition, it was seen from the C–f characteristics that the values of capacitance have been decreased towards to the high frequencies. The higher values of capacitance at low frequencies were attributed to the excess capacitance resulting from the interface states in equilibrium with the Ga2Te3 that can follow the ac signal.
- «
- 1 (current)
- 2
- 3
- »