Arama Sonuçları

Listeleniyor 1 - 8 / 8
  • Öğe
    Improvement of diode parameters in Al/n-Si schottky diodes with coronene interlayer using variation of the illumination intensity
    (Elsevier, 2017-12-15) Pakma, Osman; Çavdar, Şükrü; Koralay, Haluk; Tuğluoğlu, Nihat; Yüksel, Ömer Faruk
    In present work, Coronene thin films on Si wafer have been deposited by the spin coating method. It has been ultimately produced Al/Coronene/n-Si/In Schottky diode. Current–voltage (I-V) measurements have been used to determine the effect of illumination intensity in the Schottky diodes. The barrier height (ΦB) values increased as ideality factor (n) values decreased with a increase in illumination intensity. The ΦB values have been found to be 0.697 and 0.755 eV at dark and 100 mW/cm2, respectively. The n values have been found to be 2.81 and 2.07 at dark and 100 mW/cm2, respectively. Additionally, the series resistance (Rs) values from modified Norde method and interface state density (Nss) values using current-voltage measurements have been determined. The values of Rs have been found to be 1924 and 5094 Ω at dark and 100 mW/cm2, respectively. The values of Nss have been found to be 4.76 × 1012 and 3.15 × 1012 eV−1 cm−2 at dark and 100 mW/cm2, respectively. The diode parameters are improved by applying the variation of illumination intensity to the formed Schottky diodes.
  • Öğe
    A study of the rectifying behaviour of aniline green-based Schottky diode
    (Elsevier, 2010-02) Güllü, Ömer; Aydoğan, Şakir
    An Al/aniline green (AG)/Ga2Te3 device was fabricated and the current–voltage (I–V), capacitance–voltage (C–V) and capacitance–frequency (C–f) characteristics of the device have been investigated at room temperature. The values of the ideality factor, series resistance and barrier height obtained from Cheung and Norde methods were compared, and it was seen that there was an agreement with each other. It was seen that the forward bias current–voltage characteristics at sufficiently large voltages has shown the effect of the series resistance. In addition, it was seen from the C–f characteristics that the values of capacitance have been decreased towards to the high frequencies. The higher values of capacitance at low frequencies were attributed to the excess capacitance resulting from the interface states in equilibrium with the Ga2Te3 that can follow the ac signal.
  • Öğe
    Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor
    (Elsevier, 2011-01) Güllü, Ömer; Türüt, Abdülmecit
    The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φb determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (VF-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (IF) in the range 20 nA-6 μA. The VF-T characteristics were linear for three activation currents in the diode. From the VF-T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dV F/dT) for the diode were determined as -2.30 mV K-1, -2.60 mV K-1 and -3.26 mV K-1 with a standard error of 0.05 mV K-1, respectively.
  • Öğe
    Electrical characterization of the Al/new fuchsin/n-Si organic-modified device
    (Elsevier, 2010-03) Güllü, Ömer; Asubay, Sezai; Turut, Abdulmecit; Aydoğan, Şakir
    The current–voltage (I–V) and the capacitance–voltage (C–V) characteristics of the Al/new fuchsin (NF)/n-Si device have been investigated at room temperature. The I–V characteristic of the device shows a good rectification. The ideality factor and the barrier height from the I–V characteristics have been determined as 3.14 and 0.80 eV, respectively. A modified Norde's function combined with the conventional I–V method has been used to extract the parameters including the barrier height and the series resistance. The barrier height and the series resistance obtained from Norde's function have been compared with those from Cheung functions, and it has been seen that there was a good agreement between those from both method. It has also been seen that the values of diode capacitance increased up to the constant values for the forward bias.
  • Öğe
    The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes
    (Elsevier, 2009-11-03) Güllü, Ömer; Karataş, Şükrü; Güler, Gülşen; Bakkaloğlu, Ömer Faruk
    We have studied the experimental linear relationship between ideality factors and barrier heights (BHs) for Co/n-Si metal–semiconductor (MS) structures with a doping density of about 1015 cm−3. The barrier heights for the Co/n-type Si metal–semiconductor structures from the current–voltage (I–V) characteristics varied from 0.64 to 0.70 eV, the ideality factor n varied from 1.18 to 1.26, and from reverse bias capacitance–voltage (C−2–V) characteristics the barrier height varied from 0.68 to 0.81 eV. The experimental barrier height distributions obtained from the I–V and C−2–V characteristics were fitted by a Gaussian distribution function, and their mean values were found to be 0.67 and 0.75 eV, respectively. Furthermore, the lateral homogeneous BH value of approximately 0.81 eV for Co/n-Si metal–semiconductor structures was obtained from the linear relationship between experimental effective BHs and ideality factors.
  • Öğe
    Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms
    (Elsevier, 2010-04) Güllü, Ömer
    Here I demonstrate that DNA biopolymer molecules can control the electrical characteristics of conventional Al/n-InP metal–semiconductor contacts. Results show that DNA increases an effective barrier height as high as 0.87 eV by influencing the space charge region of n-InP device with a good rectifying behavior
  • Öğe
    High barrier Schottky diode with organic interlayer
    (Elsevier, 2012-03) Güllü, Ömer; Aydoğan, Şakir; Türüt, Abdülmecit
    A new Cu/n-InP Schottky junction with organic dye (PSP) interlayer has been formed by using a solution cast process. An effective barrier height as high as 0.82 eV has been achieved for Cu/PSP/n-InP Schottky diodes, which have good currentvoltage (IV) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Cu and n-InP. By using capacitancevoltage measurement of the Cu/PSP/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.73 V and 0.86 eV, respectively. From the IV measurement of the diode under illumination, short circuit current (I sc) and open circuit voltage (V oc) have been extracted as 0.33 μA and 150 mV, respectively.
  • Öğe
    The analysis of the charge transport mechanism of n-Si/MEH-PPV device structure using forward bias I-V-T characteristics
    (Elsevier, 2010-03-04) Kavasoğlu, Abdülkadir Sertap; Yakuphanoğlu, Fahrettin; Kavasoğlu, Neşe; Pakma, Osman; Birgi, Özcan; Oktik, Şener
    In this study, temperature dependent current-voltage (I-V) measurements and investigation of the dc current transport mechanism of n-Si/MEH-PPV device have been performed. While the series resistance value displayed strongly temperature dependent behaviour, the ideality factor varied between 3.2 and 1.8 in the temperature range 110-330 K. The temperature dependent ideality factor behaviour at low temperature region (110-220 K) shows that tunnelling enhanced recombination is valid rather than thermionic emission theory and the characteristic tunnelling energy is calculated as 30 meV. There is a slightly linear relationship between the ideality factor and temperature at region II (230-330 K) which is attributed to drift-diffusion current transport in the n-Si/MEH-PPV device as stated already by Osvald.