31 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 10 / 31
Öğe N-type InP Schottky diodes with organic thin layer: Electrical and interfacial properties(Journal of Vacuum Science & Technology B, 2010-03) Güllü, Ömer; Turut, AbdulmecitThe rectifying junction characteristics of methyl red (MR) organic film on n-type InP substrate have been studied. It has been observed that MR-based structure shows an excellent rectifying behavior and that the MR film increases the effective barrier height by influencing the space charge region of the n-type InP. The barrier height and ideality factor values for this structure have been obtained as 0.75 eV and 1.93 from the forward bias current-voltage characteristics, respectively. By using capacitance-voltage characteristics at 1 MHz, the barrier height and the carrier concentration values have been calculated as 0.93 eV and 5.13×1015 cm−3, respectively. The energy distributions of the interface states and their relaxation times have been determined from the forward bias capacitance-frequency and conductance-frequency characteristics. Moreover, it was seen that both the interface-state density and the relaxation time of the interface states decreased with bias voltage from experimental results.Öğe Morphological, structural and optical characteristics of graphene oxide layers and metal/interlayer/semiconductor photovoltaic diode application(National Institute of Research and Development for Optoelectronics, 2018) Güllü, Ömer; Çankaya, MuratThis work describes the optical, morphological and structural characterizations of graphene oxide (GO) layers grown by drop casting and annealing process. UV-vis optical measurement shows that the values of direct and indirect optical gap energy of the GO film are 3.89 eV and 3.21 eV, respectively. The graphene oxide (GO) layer has been placed in the metal/ interlayer /semiconductor (MIS) diodes (total 17 devices) on p-Si wafers. The graphene oxide diodes give a better barrier height enhancement as compared with the conventional diodes. The value of homogeneous barrier height for Al/GO/p-Si MIS junctions was extracted as 0.74 eV. The diodes were also investigated under 300 watt light illumination for photovoltaic applications. Additionally, interfacial properties of the MIS diode with GO interlayer were determined. It has been seen that the capacitance of the device changes as a function of gate voltage and signal frequency from the capacitance-frequency measurements. It has also been reported that the interfacial trap charges reduce the capacitance with increasing frequency values.Öğe Electrical analysis of organic dye based MIS Schottky contacts(Microelectronic Engineering, 2010-05-25) Güllü, Ömer; Turut, AbdulmecitIn this work, we prepared metal/interlayer/semiconductor (MIS) diodes by coating of an organic film onp-Si substrate. Metal(Al)/interlayer(Orange G@OG)/semiconductor(p-Si) MIS structure had a good recti-fying behavior. By using the forward-biasI–Vcharacteristics, the values of ideality factor (n) and barrierheight (BH) for the Al/OG/p-Si MIS diode were obtained as 1.73 and 0.77 eV, respectively. It was seen thatthe BH value of 0.77 eV calculated for the Al/OG/p-Si MIS diode was significantly larger than the value of0.50 eV of conventional Al/p-Si Schottky diodes. Modification of the potential barrier of Al/p-Si diode wasachieved by using thin interlayer of the OG organic material. This was attributed to the fact that the OGorganic interlayer increased the effective barrier height by influencing the space charge region of Si. Theinterface-state density of the MIS diode was found to vary from 2.79x1013to 5.80x1012eVx1cmx2.Öğe Electronic properties of the metal organic interlayer inorganic semiconductor sandwich device(Elsevier, 2010-03) Güllü, Ömer; Turut, Abdulmecit; Kılıçoğlu, TahsinIn this study, we prepared a Metal(Al)/Organic Interlayer(Congo Red=CR)/Inorganic Semiconductor (p-Si) (MIS) Schottky device formed by coating of an organic film on p-Si semiconductor wafer. The Al/CR/p-Si MIS device had a good rectifying behavior. By using the forward bias I–V characteristics, the values of ideality factor (n) and barrier height (Φb) for the Al/CR/p-Si MIS device were obtained as 1.68 and 0.77 eV, respectively. It was seen that the Φb value of 0.77 eV calculated for the Al/CR/p-Si MIS device was significantly higher than value of 0.50 eV of the conventional Al/p-Si Schottky diodes. Modification of the interfacial potential barrier of the Al/p-Si diode was achieved by using a thin interlayer of the CR organic material. This was attributed to the fact that the CR organic interlayer increased the effective barrier height by influencing the space charge region of Si. The interface-state density of the MIS diode was found to vary from 1.24×1013 to 2.44×1012 eV−1 cm−2.Öğe Photoelectric and photocapacitance characteristics of Au/pyrene/N-Si MIS structures(Journal of Non-Oxide Glasses, 2017-04-01) Güllü, Ömer; Pakma, Osman; Özaydın, Cihat; Arsel, İsmail; Turmuş, MesutThis paper presents in-depth analysis of the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of identically prepared Au/Pyrene(C16H10)/n-Si hybrid organic-oninorganic semiconductor photovoltaic cells (total 43 diodes). The barrier heights, ideality factors and reverse bias saturation currents of all devices were extracted from the electrical characteristics. The mean barrier height, mean ideality factor and mean saturation current from I-V measurements were calculated as 0.79 ± 0.01 eV, 1.40 ± 0.08 and (1.01 ± 0.46)x10-8 A, respectively. Also, the photoelectric (I-V) and photocapacitance (C-V and conductance (G)-voltage (V)) characteristics of the Au/Pyrene/n-Si device under 100 mW/cm2 light illumination were investigated. It has been seen that the light illumination increases strongly the current, capacitance and conductance values of the device due to electron-hole charge pair generation. The C-V and G-V characteristics under illumination have shown a non-monotonic dependence of capacitance on frequency giving rise to a peak. This is attributed to the existence of electrically active traps. The open circuit voltage and short circuit current of the Au/Pyrene/n-Si device were extracted as 80 mV and 30 µA, respectively.Öğe Current density-voltage analyses and interface characterization in Ag/DNA/p-InP structures(American Institute of Physics, 2012-02-15) Güllü, Ömer; Pakma, Osman; Türüt, AbdülmecitThe current density-voltage (J-V) characteristics of Ag/DNA/p-InP metal-insulator-semiconductor (MIS) structures have been investigated in room temperature. We have observed that the Ag/DNA/p-InP structure shows an excellent rectifying behavior and that this structure increases the barrier height (φ b0). The main electrical parameters of these structures, such as ideality factor (n), barrier height, and average series resistance values were found to be 1.087, 0.726 eV, and 66.92Ω. This value of n was attributed to the presence of an interfacial insulator layer at the Ag/p-InP interface and the density of interface states (N ss) localized at the InP/DNA interface. The values of N ss localized at the InP/DNA interface were found at 0.675-E v in the 1.38 × 10 12 eV -1 cm -2.Öğe The characteristic diode parameters in Ti/p-InP contacts prepared by DC sputtering and evaporation processes over a wide measurement temperature(World Scientific, 2017-06) Ejderha, Kadir; Asubay, Sezai; Yıldırım, Nezir; Güllü, Ömer; Türüt, Abdülmecit; Abay, BahattinThe titanium/p-indium phosphide (Ti/p-InP) Schottky diodes (SDs) have been prepared by thermal evaporation and DC magnetron sputtering deposition. Then, their current-voltage (I-V) characteristics have been measured in the sample temperature range of 100-400K with steps of 20K. The characteristic parameters of both Ti/p-InP SDs have been compared with each other. The barrier height (BH) values of 0.824 and 0.847 at 300K have been obtained for the sputtered and the evaporated SDs, respectively. This low BH value for the sputtered SD has been attributed to some defects introduced by the sputtered deposition technique over a limited depth in to the p-type substrate. The BH of the evaporated and sputtered diodes has decreased with the standard deviations of 58 and 64mV obeying to double-Gaussian distribution (GD) in 220-400K range, respectively, and it has seen a more sharper reduction for the BHs with the standard deviations of 93 and 106 mV in 100-220K range. The Richardson constant values of 89.72 and 53.24A(Kcm)-2 (in 220-400K range) for the evaporated and sputtered samples, respectively, were calculated from the modified ln(I0/T2)-q2σs2/2k2T2 vs (kT)-1 curves by GD of the BHs. The value 53.24A(Kcm)-2 for the sputtered sample in high temperatures range is almost the same as the known Richardson constant value of 60A(Kcm)-2 for p-type InP.Öğe Synthesis and characterization of vanadium oxide thin films on different substrates(Springer Nature, 2017-04-11) Güllü, Ömer; Pakma, Osman; Özaydın, Cihat; Özden, Şadan; Kariper, İshak AfşinIn this study, the V8O15 derivative of vanadium oxide was produced on plain glass, indium tin oxide and silicon wafer substrate layers by taking advantage of wet chemical synthesis which is an easy and economical method. The structural properties of the produced films were examined by XRD and SEM analyses. Besides, Al/VOx/p-Si metal-oxide-semiconductor (MOS) structure was obtained by the same synthesis method. Doping densities of these MOS structures were calculated from frequency dependent capacitance–voltage measurements. It was determined that the interface states which were assigned with the help of these parameters vary according to frequency.Öğe Electrical properties of organic–ınorganic semiconductor device based on rhodamine-101(SpringerLink, 2009-05) Güllü, Ömer; Turut, Abdulmecit; Yıldırım, Nezir; Çakar, MuzafferRhodamine-101 (Rh101) thin films on n-type Si substrates have been formed by means of evaporation, thus Sn/Rh101/n-Si heterojunctions have been fabricated. The Sn/Rh101/n-Si devices are rectifying. The optical energy gaps have been determined from the absorption spectra in the wavelength range of 400 nm to 700 nm. Rh101 has been characterized by direct optical absorption with an optical edge at 2.05 ± 0.05 eV and by indirect optical absorption with␣an optical edge at 1.80 ± 0.05 eV. It was demonstrated that trap-charge-limited current is the dominant transport mechanism at large forward bias. A␣mobility value of μ = 7.31 × 10−6 cm2 V−1 s−1 for Rh101 has been obtained from the forward-bias current–voltage characteristics.Öğe Analysis of interface states of Al/DNA/p-Si MIS photovoltaic structures with DNA biomolecules using the conductance technique(Taylor & Francis, 2017-03-29) Güllü, ÖmerIn this study, we report on the calculation of interface charge distribution of metal–interlayer–semiconductor (MIS) photovoltaic diodes containing DNA biomolecules and Si semiconductor based on the conductance technique. DNA biofilms were deposited at room temperature using a simple cast method on p-type Si. Interface parameters of the Al/DNA/p-Si structures were investigated by using capacitance–voltage (C–V) and conductance–voltage (G–V) measurements as a function of frequency. The distributions of interfacial charge states and the trap relaxation times were reported. Also, photoelectric and photocapacitance properties of the diode were measured at room temperature.